Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Углеводы: в каких продуктах их больше, значение для организма. Где образуются жиры и углеводы

Химические свойства клеток, входящих в состав живых организмов, зависят прежде всего от количества атомов углерода, составляющих до 50% сухой массы. Атомы карбона находятся в главных органических веществах: белках, нуклеиновых кислотах, липидах и углеводах. К последней группе относятся соединения карбона и воды, соответствующие формуле (CH 2 O) n , где n равно или больше трех. Кроме углерода, гидрогена и оксигена, в состав молекул могут входить атомы фосфора, азота, серы. В данной статье мы изучим роль углеводов в организме человека, а также особенности их строения, свойств и функций.

Классификация

Данную группу соединений в биохимии разделяют на три класса: простые сахара (моносахариды), полимерные соединения с гликозидной связью - олигосахариды и биополимеры с большой молекулярной массой - полисахариды. Вещества вышеназванных классов встречаются в различных видах клеток. Например, крахмал и глюкоза имеются в растительных структурах, гликоген - в гепатоцитах человека и клеточных стенках грибов, хитин - в наружном скелете членистоногих. Все вышеперечисленные вещества - это углеводы. Роль углеводов в организме универсальна. Они - основной поставщик энергии для жизненных проявлений бактерий, животных и человека.

Моносахариды

Имеют общую формулу C n H 2 n O n и делятся на группы в зависимости от количества атомов карбона в молекуле: триозы, тетрозы, пентозы и так далее. В составе клеточных органелл и цитоплазме простые сахара имеют две пространственные конфигурации: циклическую и линейную. В первом случае атомы углерода соединяются друг с другом ковалентными сигма-связями и образуют замкнутые циклы, во втором случае углеродный скелет не замкнут и может иметь разветвления. Чтобы определить, какова роль углеводов в организме, рассмотрим наиболее распространенные из них - пентозы и гексозы.

Изомеры: глюкоза и фруктоза

Они имеют одинаковую молекулярную формулу C 6 H 12 O 6 , но различные структурные виды молекул. Ранее мы уже называли главную роль углеводов в живом организме - энергетическую. Вышеназванные вещества расщепляются клеткой. В результате происходит выделение энергии (17,6 кДж из одного грамма глюкозы). Кроме этого, синтезируется 36 молекул АТФ. Распад глюкозы происходит на мембранах (кристах) митохондрий и представляет собой цепь ферментативных реакций - Цикл Кребса. Он является важнейшим звеном диссимиляции, протекающей во всех без исключения клетках гетеротрофных эукариотических организмов.

Глюкоза образуется также в миоцитах млекопитающих вследствие расщепления в мышечной ткани запаса гликогена. В дальнейшем она используется как легко распадающееся вещество, так как обеспечение клеток энергией - это основная роль углеводов в организме. Растения являются фототрофами и самостоятельно образуют глюкозу в процессе фотосинтеза. Эти реакции называются циклом Кальвина. Исходным веществом служит углекислый газ, а акцептором - риболёзодифосфат. Синтез глюкозы происходит в матриксе хлоропластов. Фруктоза, имея такую же молекулярную формулу, как и глюкоза, содержит в молекуле функциональную группу кетонов. Она более сладкая, чем глюкоза, и находится в меде, а также соке ягод и фруктов. Таким образом, биологическая роль углеводов в организме заключается прежде всего в использовании их в качестве быстрого источника получения энергии.

Роль пентоз в наследственности

Остановимся еще на одной группе моносахаридов - рибозе и дезоксирибозе. Их уникальность заключается в том, что они входят в состав полимеров - нуклеиновых кислот. Для всех организмов, включая неклеточные формы жизни, ДНК и РНК являются главными носителями наследственной информации. Рибоза входит в молекулы РНК, а дезоксирибоза содержится в нуклеотидах ДНК. Следовательно, биологическая роль углеводов в организме человека состоит в том, что они участвуют в образовании единиц наследственности - генов и хромосом.

Примерами пентоз, содержащих альдегидную группу и распространенных в растительном мире, являются ксилоза (содержится в стеблях и семенах), альфа-арабиноза (находится в камеди косточковых плодовых деревьев). Таким образом, распространение и биологическая роль углеводов в организме высших растений достаточно велики.

Что такое олигосахариды

Если остатки молекул моносахаридов, например, таких как глюкоза или фруктоза, связаны ковалентными связями, то образуются олигосахариды - полимерные углеводы. Роль углеводов в организме как растений, так и животных разнообразна. Особенно это касается дисахаридов. Наиболее распространены среди них сахароза, лактоза, мальтоза и трегалоза. Так, сахароза, иначе называемая тростниковым или содержится в растениях в виде раствора и запасается в их корнеплодах или стеблях. В результате гидролиза образуются молекулы глюкозы и фруктозы. имеет животное происхождение. У некоторых людей наблюдается непереносимость этого вещества, связанная с гипосекрецией фермента лактазы, который расщепляет молочный сахар на галактозу и глюкозу. Роль углеводов жизнедеятельности организма разнообразна. Например, дисахарид трегалоза, состоящий из двух остатков глюкозы, входит в состав гемолимфы ракообразных, пауков, насекомых. Также он встречается в клетках грибов и некоторых водорослей.

Еще один дисахарид - мальтоза, или солодовый сахар, содержится в зерновках ржи или ячменя при их прорастании, представляет собой молекулу, состоящую из двух остатков глюкозы. Она образуется в результате распада растительного или животного крахмала. В тонком кишечнике человека и млекопитающих мальтоза расщепляется под действием фермента - мальтазы. При его отсутствии в панкреатическом соке возникает патология, обусловленная непереносимостью в продуктах питания гликогена или растительного крахмала. В этом случае используют специальную диету и добавляют в рацион питания сам фермент.

Сложные углеводы в природе

Они распространены очень широко, особенно в растительном мире, являются биополимерами и имеют большую молекулярную массу. Например, в крахмале она равна 800 000, а в целлюлозе - 1 600 000. Полисахариды отличаются между собой составом мономеров, степенью полимеризации, а также длиной цепей. В отличие от простых сахаров и олигосахаридов, которые хорошо растворяются в воде и имеют сладковатый вкус, полисахариды гидрофобны и безвкусны. Рассмотрим роль углеводов в организме человека на примере гликогена - животного крахмала. Он синтезируется из глюкозы и резервируется в гепатоцитах и клетках скелетных мышц, где его содержание в два раза выше, чем в печени. К образованию гликогена способны также подкожная жировая клетчатка, нейроциты и макрофаги. Другой полисахарид - растительный крахмал, является продуктом фотосинтеза и образуется в зеленых пластидах.

С самого начала человеческой цивилизации главными поставщиками крахмала были ценные сельскохозяйственные культуры: рис, картофель, кукуруза. Они до сих пор являются основой пищевого рациона подавляющего большинства жителей Земли. Именно поэтому так ценны углеводы. Роль углеводов в организме состоит, как мы видим, в их применении в качестве энергоемких и быстро усваиваемых органических веществ.

Существует группа полисахаридов, мономерами которых являются остатки гиалуроновой кислоты. Они называются пектинами и являются структурными веществами клеток растений. Особенно богаты ими кожура яблок, жом свеклы. Клеточные вещества пектины регулируют внутриклеточное давление - тургор. В кондитерской промышленности они используются как желеобразующие вещества и загустители при производстве высококачественных сортов зефира и мармелада. В диетическом питании применяются как биологически активные вещества, хорошо выводящие токсины из толстого кишечника.

Что такое гликолипиды

Это интересная группа комплексных соединений углеводов и жиров, находящихся в нервной ткани. Из неё состоит головной и спинной мозг млекопитающих. Гликолипиды встречаются также в составе клеточных мембран. Например, у бактерий они участвуют в Часть этих соединений является антигенами (вещества, выявляющие группы крови системы Ландштейнера АБ0). В клетках животных, растений и человека, кроме гликолипидов, присутствуют и самостоятельные молекулы жиров. Они выполняют прежде всего энергетическую функцию. При расщеплении одного грамма жира выделяется 38,9 кДж энергии. Для липидов характерна также структурная функция (входят в состав клеточных мембран). Таким образом, эти функции выполняют углеводы и жиры. Их роль в организме исключительно велика.

Роль углеводов и липидов в организме

В клетках человека и животных могут наблюдаться взаимные превращения полисахаридов и жиров, происходящие в результате обмена веществ. Учеными-диетологами установлено, что излишнее потребление крахмалистой пищи приводит к накоплению жира. Если человек имеет нарушения со стороны поджелудочной железы в плане выделения амилазы или ведет малоподвижный образ жизни, его вес может сильно увеличиться. Стоит помнить, что богатая углеводами пища расщепляется в основном в двенадцатиперстной кишке до глюкозы. Она всасывается капиллярами ворсинок тонкого кишечника и депонируется в печени и мышцах в виде гликогена. Чем более интенсивный обмен веществ в организме, тем активнее он расщепляется до глюкозы. Затем она используется клетками как основной энергетический материал. Данная информация служит ответом на вопрос о том, какую роль играет углеводы организме человека.

Значение гликопротеидов

Соединения этой группы веществ представлены комплексом углевод + белок. Их еще называют гликоконъюгатами. Это антитела, гормоны, мембранные структуры. Новейшими биохимическими исследованиями установлено: если гликопротеиды начинают изменять свою нативную (природную) структуру, это приводит к развитию таких сложнейших заболеваний, как астма, ревматоидный артрит, рак. Роль гликоконъюгатов в метаболизме клетки велика. Так, интерфероны подавляют размножение вирусов, иммуноглобулины защищают организм от патогенных агентов. Белки крови также относятся к этой группе веществ. Они обеспечивают защитные и буферные свойства. Все вышеперечисленные функции подтверждает тот факт, что физиологическая роль углеводов в организме разнообразна и чрезвычайно важна.

Где и как образуются углеводы

Основные поставщики простых и сложных сахаров - это зеленые растения: водоросли, высшие споровые, голосеменные и цветковые. Все они содержат в клетках пигмент хлорофилл. Он входит в состав тилакоидов - структур хлоропластов. Российский ученый К. А Тимирязев изучил процесс фотосинтеза, в результате которого образуются углеводы. Роль углеводов в организме растения заключается в накоплении крахмала в плодах, семенах и луковицах, то есть в вегетативных органах. Механизм фотосинтеза достаточно сложен и состоит из серии ферментативных реакций, протекающих как на свету, так и в темноте. Глюкоза синтезируется из углекислого газа под действием ферментов. Гетеротрофные организмы используют зеленые растения в качестве источника пищи и энергии. Таким образом, именно растения являются первым звеном во всех и называются продуцентами.

В клетках гетеротрофных организмов углеводы синтезируются на каналах гладкой (агранулярной) эндоплазматической сети. Затем они используются как энергетический и строительный материал. В растительных клетках углеводы дополнительно образуются в комплексе Гольджи, а затем идут на формирование целлюлозной клеточной стенки. В процессе пищеварения позвоночных животных соединения, богатые углеводами, частично расщепляются в ротовой полости и желудке. Основные же реакции диссимиляции происходят в двенадцатиперстной кишке. В неё выделяется поджелудочный сок, содержащий фермент амилазу, расщепляющий крахмал до глюкозы. Как уже было ранее сказано, глюкоза всасывается в кровь в тонком кишечнике и разносится по всем клеткам. Здесь она используется как источник энергии и структурное вещество. Это объясняет, какую роль в организме играют углеводы.

Надмембранные комплексы гетеротрофных клеток

Они характерны для животных и грибов. Химический состав и молекулярная организация этих структур представлены такими соединениями, как липиды, белки и углеводы. Роль углеводов в организме - это участие в и построении мембран. В клетках человека и животных есть особый структурный компонент, называемый гликокаликсом. Этот тонкий поверхностный слой состоит из гликолипидов и гликопротеидов, связанных с цитоплазматической мембраной. Он обеспечивает непосредственную связь клеток с внешней средой. Здесь же происходит восприятие раздражений и внеклеточное пищеварение. Благодаря своей углеводной оболочке клетки слипаются друг с другом, образуя ткани. Это явление называется адгезией. Добавим также, что «хвосты» углеводных молекул находятся над поверхностью клетки и направлены в межтканевую жидкость.

Другая группа гетеротрофных организмов - грибы, также имеет поверхностный аппарат, называемый клеточной стенкой. В неё входят сложные сахара - хитин, гликоген. Некоторые виды грибов содержат также растворимые углеводы, например трегалозу, называемую грибным сахаром.

У одноклеточных животных, таких как инфузории, поверхностный слой - пелликула, также содержит комплексы олигосахаридов с белками и липидами. У некоторых простейших пелликула достаточно тонкая и не мешает изменению формы тела. А у других она утолщается и становится прочной, как панцирь, выполняя защитную функцию.

Клеточная стенка растений

Она также содержит большое количество углеводов, особенно целлюлозы, собранной в виде пучков волокон. Эти структуры формируют каркас, погруженный в коллоидный матрикс. Он состоит в основном из олиго- и полисахаридов. Клеточные стенки растительных клеток могут одревесневать. В этом случае промежутки между пучками целлюлозы заполняются другим углеводом - лигнином. Он усиливает опорные функции клеточной оболочки. Часто, особенно у многолетних древесных растений, наружный слой, состоящий из целлюлозы, покрывается жироподобным веществом - суберином. Он препятствует попаданию внутрь растительных тканей воды, поэтому нижележащие клетки быстро отмирают и покрываются слоем пробки.

Суммируя вышесказанное, мы видим, что в клеточной стенке растений тесно взаимосвязаны углеводы и жиры. Их роль в организме фототрофов трудно недооценить, так как гликолипидные комплексы обеспечивают опорную и защитную функции. Изучим разнообразие углеводов, характерных для организмов царства Дробянки. К нему относятся прокариоты, в частности бактерии. Их клеточная стенка содержит углевод - муреин. В зависимости от строения поверхностного аппарата бактерии разделяют на грамположительные и грамотрицательные.

Строение второй группы более сложное. Эти бактерии имеют два слоя: пластичный и ригидный. Первый содержит мукополисахариды, например муреин. Его молекулы имеют вид крупных сетчатых структур, образующих капсулу вокруг бактериальной клетки. Второй слой состоит из пептидогликана - соединения полисахаридов и белков.

Липополисахариды клеточной стенки позволяют бактериям прочно прикрепляться к различным субстратам, например, к зубной эмали или к мембране эукариотических клеток. Кроме этого, гликолипиды способствуют слипанию бактериальных клеток между собой. Таким путем образуются, например, цепочки стрептококков, грозди стафилококков, более того, некоторые виды прокариот имеют дополнительную слизистую оболочку - пеплос. Она содержит в своем составе полисахариды и легко разрушается под действием жесткого радиационного излучения или при контакте с некоторыми химическими веществами, например антибиотиками.

БЕЛКИ - полимеры, состоящие из аминокислот, связанных между собой пептидной связью.

В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.

Функции белков:

1. Основной строительный материал в организме.
2. Являются переносчиками витаминов, гормонов, жирных кислот и др. веществ.
3. Обеспечивают нормальное функционировании иммунной системы.
4. Обеспечивают состояние "аппарата наследственности".
5. Являются катализаторами всех биохимических метаболических реакций организма.

Организм человека в нормальных условиях (в условиях, когда нет необходимости пополнения дефицита аминокислот за счет распада сывороточных и клеточных белков) практически лишен резервов белка (резерв - 45 г : 40 г в мыщцах, 5 г в крови и печени), поэтому единственным источником пополнения фонда аминокислот, из которых синтезируются белки организма, могут служить только белки пищи.

Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот.

Различают заменимые аминокислоты (синтезируются в организме) и незаменимые аминокислоты (не могут синтезироваться в организме, а поэтому должны поступать в организм в пищей). К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.

Недостаток незаменимых аминокислот в пище приводит к нарушениям белкового обмена.

Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин, незаменимыми условно — аргинин и гистидин. Все эти аминокислоты человек получает только с пищей.

Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин; условно заменимые — аргинин и гистидин.

Белки, в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.

Кроме основной функции белков - белки как пластический материал, он может использоваться и как источник энергии при недостатке других веществ (углеводов и жиров). При окислении 1 г белка освобождается около 4,1 ккал.

При избыточном поступлении белков в организм, превышающем потребность, они могут превращаться в углеводы и жиры. Избыточное потребление белка вызывают перегрузку работы печени и почек, участвующих в обезвреживании и элиминации их метаболитов. Повышается риск формирования аллергических реакций. Усиливаются процессы гниения в кишечнике - расстройство пищеварения в кишечнике.

Дефицит белка в пище приводит к явлениям белкового голодания - истощению, дистрофии внутренних органов, голодные отеки, апатия, снижению резистентности организма к действию повреждающих факторов внешней среды, мышечной слабости, нарушении функции центральной и периферической нервной системы, нару- шению ОМЦ, нарушение развития у детей.

Суточная потребность в белках - 1 г/кг веса при условии достаточного содержания незаменимых аминокислот (например, при приеме около 30 г животного белка), старики и дети - 1,2-1,5 г/кг , при тяжелой работе, росте мышц - 2 г/кг .

ЖИРЫ (липиды) - органические соединения, состоящие из глицерина и жирных кислот.

Функции жиров в организме:

Являются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;

Являются компонентом структурных элементов клетки — ядра, цитоплазмы, мембраны;

Депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы — от механических повреждений.

Различают нейтральные жиры (триацилглицеролы), фосфолипиды , стероиды (холестерин).

Поступившие с пищей нейтральные жиры в кишечнике расщепляются до глицерина и жирных кислот. Эти вещества всасываются - проходят через стенку тонкого кишечника, вновь превращаются в жир и поступают в лимфу и кровь. Кровь транспортирует жиры в ткани, где они используются в качестве энергетического и пластического материала. Липиды входят в состав клеточных структур.

Уровень жирных кислот в организме регулируется как отложением (депонированием) их в жировой ткани, так и высвобождением из нее. По мере увеличения уровня глюкозы в крови жирные кислоты под влиянием инсулина, депонируются в жировой ткани.

Высвобождение жирных кислот из жировой ткани стимулируется адреналином, глюкагоном и соматотропым гармоном, тормозится — инсулином.

Жиры, как энергетический материал используется главным образом при выполнении длительной физической работы умеренной и средней интенсивности (работа в режиме аэробной производительности организма). В начале мышечной деятельности используются преимущественно углеводы, но по мере уменьшения их запасов начинается окисление жиров.

Обмен липидов тесно связан с обменом белков и углеводов. Поступающие в избытке в организм углеводы и белки превращаются в жир. При голодании жиры, расщепляясь, служат источником углеводов.

Суточная потребность в жирах - 25-30% от общего числа калорий. Суточная потребность незаменимых жирных кислот около 10 г .

Жирные кислоты являются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания.

К незаменимым жирным кислотам , которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10-12 г ).

Линолевая и лоноленовая кислоты содержатся в растительных жирах, арахидовая — только в животных.

Недостаток незаменимых жирных кислот приводит к нарушению функций почек, кожным нарушениям, повреждениям клеток, метаболическим расстройствам. Избыток незаменимых жирных кислот приводит к повышенной потребности токоферола (витамина Е).

УГЛЕВОДЫ - органические соединения, содержащиеся во всех тканях организма в свободном виде в соединениях с липидами и белками и являющиеся основным источникам энергии.

Функции углеводов в организме:

Являются непосредственным источником энергии для организма.

Участвуют в пластических процессах метаболизма.

Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.

Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды - углеводы, которые не могут быть расщеплены до более простых форм (глюкоза, фруктоза).

Дисахариды - углеводы, которые пригидролизе дают две молекулы моносахаров (сахароза, лактоза).

Полисахариды - углеводы, которые при гидролизе дают более шести молекул моносахаридов (крахмал, гликоген, клетчатка).

На углеводы должно приходиться до 50 - 60% энергоценности пищевого рациона.

В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена.

В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом "депо".

Около 70% углеводов пищи окисляется в тканях до воды и двуокиси углерода.

Углеводы используются организмом либо как прямой источник тепла (глюкозо-6-фосфат), либо как энергетический резерв (гликоген);
Основные углеводы - сахара, крахмал, клетчатка - содержатся в растительной пище, суточная потребность в которой у человека составляет около 500 г (минимальная потребность 100-150 г/сут ).

При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.
Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышенной аллергизации организма, сахарному диабету.

Материал подготовлен на основе информации из открытых источников

Когда жиры попадают в кишечник, начинается процесс их расщепления до глицерина и жирных кислот. Потом эти вещества проникают сквозь стенку кишечника и вновь преобразуются в жиры, которые всасываются в кровь. Она транспортирует жиры в ткани, и там они используются в качестве энергетического и строительного материала.

Липиды входят в состав клеточных структур, поэтому они необходимы для образования новых клеток. Избыточное количество жира откладывается в виде запасов жировой ткани. Следует отметить, что нормальное количество жира у спортсмена в среднем составляет 10-12% от массы тела. В процессе окисления из 1 г жира высвобождается 9,3 ккал энергии.

Калорийность пищи определяется по наличию в продуктах жиров и углеводов. В организме жиры образуются из жиров, белков и углеводов, которые поступают с пищей.

Жиры играют важную роль в регулировании обмена веществ и способствуют нормальному функционированию организма. Следует отметить, что растительные масла должны составлять не менее 1 / 3 рациона спортсмена.

Недостаток жиров в рационе приводит к заболеваниям кожи, авитаминозам и другим болезням.

Углеводы

В диетологии углеводы разделяются на простые (сахарные) и сложные, более важные с точки зрения рационального питания. Простые углеводы называются моносахаридами (это фруктоза и глюкоза). Моносахариды быстро растворяются в воде, это способствует их поступлению из кишечника в кровь. Сложные углеводы построены из нескольких молекул моносахаридов и называются полисахаридами. К полисахаридам относятся все разновидности сахаров: молочный, свекловичный, солодовый и другие, а также клетчатка, крахмал и гликоген. Гликоген является важнейшим элементом для развития выносливости у спортсменов, относится к полисахаридам, вырабатывается в организме животными. Хранится в печени и мышечной ткани, в мясе гликоген почти не содержится, так как после смерти живых организмов он распадается. Организм усваивает углеводы за достаточно короткое время. Глюкоза, попадая в кровь, сразу становится источником энергии, воспринимаемым всеми тканями организма. Глюкоза необходима для нормального функционирования мозга и нервной системы.

Часть углеводов содержится в организме в виде гликогена, который в большом количестве способен превращаться в жир. Во избежание этого следует рассчитывать калорийность потребляемой пищи и поддерживать баланс расходуемых и получаемых калорий.

Углеводами богаты ржаной и пшеничный хлеб, сухари, крупы (пшеничная, гречневая, перловая, манная, овсяная, ячневая, кукурузная, рисовая), отруби и мед.

Минеральные вещества

Эти вещества входят в состав тканей и участвуют в их нормальном функционировании, поддерживают необходимое осмотическое давление в биологических жидкостях и постоянство кислотно-щелочного баланса в организме.

Рассмотрим основные минеральные вещества.

Калий входит в состав клеток, а натрий содержится в межклеточной жидкости. Для нормальной жизнедеятельности организма необходимо строго определенное соотношение натрия и калия. Оно обеспечивает нормальную возбудимость мышечной и нервной тканей. Натрий участвует в поддержании постоянного осмотического давления, а калий влияет на сократительную функцию сердца.

Как избыток, так и недостаток калия в организме может привести к нарушениям в работе сердечно-сосудистой системы.

Калий присутствует в разной концентрации во всех жидкостях тела, помогает поддерживать водно-солевой баланс.

Богатыми натуральными источниками калия являются бананы, абрикосы, авокадо, картофель, молочные продукты, цитрусовые.

Кальций входит в состав костей. Его ионы участвуют в нормальной деятельности скелетных мышц и мозга. Наличие кальция в организме способствует свертыванию крови. Избыточное количество кальция повышает частоту сокращений сердечной мышцы, а в очень больших концентрациях может вызвать остановку сердца. Лучшим источником кальция являются молочные продукты, кальцием также богата капуста брокколи и лососевые виды рыбы.

Фосфор входит в состав клеток и межклеточных тканей. Он участвует в процессе обмене жиров, белков, углеводов и витаминов. Соли фосфора играют важную роль в поддержании кислотно-щелочного баланса крови, укреплении мышц, костей и зубов. Фосфором богаты бобовые культуры, миндаль, птица и в особенности рыба.

Хлор входит в состав соляной кислоты желудочного сока и находится в организме в соединении с натрием. Хлор необходим для жизнедеятельности всех клеток организма.

Железо является составной частью некоторых ферментов и гемоглобина. Оно участвует в распределении кислорода и способствует окислительным процессам. Достаточное количество железа в организме предотвращает развитие анемии и снижение иммунитета, ухудшение работоспособности головного мозга. Натуральным источником железа являются зеленые яблоки, жирная рыба, абрикосы, горох, чечевица, инжир, морепродукты, мясо, птица.

Бром содержится в крови и других жидких сферах организма. Он усиливает процессы торможения в коре головного мозга и этим способствует нормальному соотношению между тормозными и возбудительными процессами.

Йод входит в состав гормонов, вырабатываемых щитовидной железой. Недостаток йода может вызывать нарушение многих функций организма. Источником йода являются йодированная соль, морская рыба, водоросли и другие морепродукты.

Сера входит в состав белков. Она содержится в гормонах, ферментах, витаминах и других соединениях, которые участвуют в обменных процессах. Серная кислота нейтрализует вредные вещества в печени. Достаточное присутствие серы в организме понижает уровень холестерина, предотвращает развитие опухолевых клеток. Серой богаты луковые культуры, зеленый чай, гранаты, яблоки, различные виды ягод.

Для нормального функционирования организма важны цинк, магний, алюминий, кобальт и марганец. Они входят в состав клеток в незначительных количествах, поэтому их называют микроэлементами.

Магний – металл, участвующий в биохимических реакциях. Он необходим для сокращения мышц и работы ферментов. Этот микроэлемент укрепляет костную ткань, регулирует сердечный ритм. Источником магния являются авокадо, коричневый рис, пророщенная пшеница, семена подсолнечника, амарант.

Марганец – микроэлемент, необходимый для образования костных и соединительных тканей, работы ферментов, участвующих в углеводном обмене. Марганцем богаты ананасы, ежевика, малина.

1.В органах пищеварения не расщепляются А – углеводы Б – води и минеральные соли В – жиры Г – белки 2. Белки расщепля

А – пищеводе

Б – ротовой полости

В – печени

Г – желудке, кишечнике

3. Конечный продукт обмена белков

А – аминокислоты

Б – углеводы

В – мочевина

Г – кислород

4. Процессы окисления органических веществ с освобождением энергии протекают в

А – хлоропластах

Б – митохондриях

Г – рибосомах

5. В организме невосполним недостаток

Б – углеводов

В – белков

Г – глюкозы

6. Пластический обмен это –

А – синтез органических веществ из неорганических

Б – окисление органических веществ

В – синтез минеральных веществ

Г – окисление минеральных веществ

7. С энергетическим обменом связано

А – накопление органических веществ

Б – поступление кислорода в организм

В – образование органических веществ

Г – выделение кислорода

8. Люди не могут обходится только растительной пищей, так как

А – в ней мало углеводов

Б – в ней нет жиров

В – в ней нет белков

Г – растений не содержат всех необходимых аминокислот

9. Много витамина С содержится в

А – семенах бобовых растений

Б – печени

В – плодах шиповника

Г – рыбьем жире

10. при недостатке витамина с развивается

А – цинга

Б – «куриная слепота»

В – расстройства деятельности нервной системы

Г – рахит

11. При недостатке витамина В1 развивается

А – цинга

Б – расстройство деятельности нервной системы

В – рахит

Г – «куриная слепота»

12. Конечные продукты распада удаляются из организма

А – только через почки

Б – только через легкие

В – только через кожу

Г – через легкие, почки, кожу

13. Передачу нервного импульса по нервным волокнам обеспечивает энергия

А – механическая

Б – электрическая

В – световая

Г – химическая

14. Люди, ведущие малоподвижный образ жизни, должны больше потреблять

В – мясной пищи

Г – продуктов, богатых клетчаткой

15. Под влиянием солнечных лучей в коже человека может образоваться витамин

16. Дети реже болеют рахитом летом, чем зимой, так как под влиянием солнца образуется витамин

17. Глюкоза откладывается в запас в виде гликогена, так как

А – он не растворим в воде

Б – он растворим в воде

В – его молекулы очень мелкие

Г – его молекулы очень большие

1.Что такое пищеварение? а) предварительная обработка пищи; б) механическая обработка пищи; в) механическая и химическая обработка пищи. 2.Какое

значение для организма имеет пища? а) строительная функция; б) энергетическая функция; в) строительная и энергетическая функция. 3.Где вырабатывается желчь? а) в печени; б) в поджелудочной железе; в) в желудке. 4.К инфекционным заболеваниям кишечника относят? а) цирроз печени; б) гастрит; в) дизентерию. 5.Где начинается процесс пищеварения? а) в кишечнике; б) в ротовой полости; в) в желудке. 6.Как называется мягкая часть в центре зуба? а) эмаль; б) пульпа; в) дентин. 7.Где располагается центр глотания? а) в продолговатом мозге; б) в больших полушариях; в) в промежуточном мозге. 8.Пищеварительная система состоит: а) из органов, образующих пищеварительный канал; б) из органов, образующих пищеварительный канал, и пищеварительных желез; в) из органов пищеварения и выделения. 9.Ученый, изучавший работу пищеварительной системы: а) И.П. Павлов; б) И.М. Сеченов; в) И.И. Мечников. 10. Источником заболевания глистовыми заболеваниями может быть: а) недоваренная рыба, плохо прожаренная; б) недоброкачественная рыба; в) несвежие продукты. 11. Где происходит расщепление некоторых белков и молочного жира? а) в желудке; б) в тонком кишечнике; в) в 12-ти – перстной кишке. 12. Где вырабатывается обеззараживающее вещество – лизоцим? а) в слюнных железах; б) в желудочных железах; в) в кишечных железах. 13. Функция ферментов слюнных желез – это: а) расщепление сложных углеводов; б) расщепление жиров; в) расщепление белков. 14. Где завершается расщепление питательных веществ? а) в желудке; б) в тонком кишечнике; в) в толстом кишечнике. 15. Какова функция ферментов кишечных железок? а) расщепление белков, жиров и углеводов; б) дробление жиров на капельки; в) всасывание продуктов расщепления. 16. Где происходит всасывание воды? а) в желудке; б) в тонком кишечнике; в) в толстом кишечнике. 17. Функция нервной ткани в стенках кишечника: а) волнообразное сокращение мышц; б) вырабатывает ферменты; в) проводит пищу. 18. Какова причина слюноотделения? а) рефлекс; б) измельчение пищи; в) наличие пищи. 19. Какие условия необходимы для расщепления белков в желудке? а) кислая среда, наличие ферментов, t = 370; б) щелочная среда, ферменты, t = 370 в) слабо-щелочная среда, наличие ферментов, t = 370. 20. В каком отделе пищеварительного тракта всасывается алкоголь? а) в тонком кишечнике; б) в толстом кишечнике; в) в желудке. 21. Почему ранки в полости рта быстро заживают? а) из-за слабощелочной среды; б) из-за фермента лизоцима; в) из-за слюны. 22. За счет чего происходит всасывание веществ в тонком кишечнике? а) длинная; б) тонкая кишка ворсистая; в) много ферментов в тонкой кишке. 23. Почему физиологи печень называют продовольственным складом? а) вырабатывается желчь и хранится; б) регулирует обмен белков, жиров, углеводов; в) превращается глюкоза в гликоген и хранится. 24. Какой фермент желудочного сока является основным и какие вещества он расщепляет? а) амилоза, расщепляет белки и углеводы; б) пепсин, расщепляет белки и молочный жир; в) мальтоза, расщепляет жиры и углеводы. 25. Почему не перевариваются стенки желудка? а) толстый мышечный слой; б) толстая слизистая оболочка; в) большое обилие слизи. 26. Отделение желудочного сока действием пищи в ротовой полости является: а) безусловным сокоотделительным рефлексом; б) условным рефлексом; в) гуморальной регуляцией. 27. Где обитает бактерия кишечная палочка, назовите ее значение. а) в тонкой кишке, помогают расщеплению углеводов; б) в толстой кишке, расщепляет клетчатку; в) в слепой кишке, вызывает заболевание аппендицит. 28. Почему физиологи образно называют печень «химической лабораторией»? а) обезвреживаются вредные вещества; б) образуется желчь; в) вырабатываются ферменты. 29. Каково значение желчи в процессе пищеварения? а) расщепляются белки, жиры и углеводы; б) обезвреживает ядовитые вещества; в) дробление жиров на капельки. 30. В чем выражается соответствие строения пищевода его функции? а) стенки мускулистые, мягкие и слизистые; б) стенки плотные, хрящевые; в) стенки плотные, наличие соединительной ткани, внутри слизистая.

1) хлеб, молоко, овощи, фрукты относятся к...а белки, жиры, углеводы-к..??

2) Пищевые белки, жиры и углеводы не могут быть сразу усвоенными организмом из-за...реакции??
3) крахмал ферментами слюны разлагается до...Белок ферментами желудочного сока и поджелудочной железы разлагается до....
4) коронка зуба покрыта, ..под ней расположен....а внутри зуба находится...?
5) печень в двенадцатипёрстную кишку выделяет....её избыток запасается в...?
6) в плохо проваренном и прожаренном мясе могут оказаться живыми....если мясо не проходило досмотр ветеринарной службы?

заполните пожалуйста пропуски

1)Слой кожи,где образуются волосы и ногти

2)Витамин образующийся в коже под влиянием ультрафиолетовых лучей
3)Наружный слой кожи
4)Органы,выделяющие тепло во внешнюю среду
5)Эпидермис состоит
6)При высокой температуре кровеносные сосуды в коже
7)название внутреннего слоя эпидермиса
8)Сухость и трещины кожи наблюдаются при недостатке витамина
9)Жиры откладываются в запас
10)Сетчатый слой дермы выполняет роль
11)Дерма образуется из
12)Кожный врач
13)Название среднего слоя кожи
14)Температура тела человека в норме
15)Слой кожи,который содержит много жировых включений
16)название наружного слоя эпидермиса
17)железа,проток которой открывается в волосяной мешочек
18)железы,чаще встречающиеся на коже головы и лица
19)кожные железы с внешней секрецией
20)кожная железа,выделяющая питательное вещество
21)количество тепла,выделяемое кожей за сутки

Помогите пожалуйста!

1.Наука изучающая клетки называется:
А) Генетика;
Б) Селекция;
В) экология;
В) Цитология.
2. Органические вещества клетки:
А) Вода, минеральные вещества, жиры;
Б) Углеводы, липиды, белки, нуклеиновые кислоты;
В) Углеводы, минеральные вещества, жиры;
Г) Вода, минеральные вещества, белки.
3. Из всех органических веществ основную массу в клетке составляют:
А) Белки.
Б)Углеводы
В) Жиры
Г) Вода.
4. Замените выделенные слова одним словом:
А) Малые молекулы органических веществ образуют в клетке сложные молекулы.
Б)Постоянные структурные компоненты клетки выполняют жизненно важные для клетки функции.
В) Высокоупорядоченная, полужидкая внутренняя среда клетки обеспечивает химическое взаимодействие всех клеточных структур.
Г)Главный фотосинтезирующий пигмент придаёт зелёную окраску хлоропластам.
5. Накопление и упаковку химических соединений в клеке осуществляют:
А) Митохондрии;
Б) Рибосомы;
В) Лизосомы;
Г) Комплекс Гольджи.
6. Функции внутриклеточного пищеварения выполняют:
А) Митохондрии;
Б) Рибосомы;
В) Лизосомы;
Г) Комплекс Гольджи.
7. «Сборку» полимерной молекулы белка производят:
А) Митохондрии;
Б) Рибосомы;
В) Лизосомы;
Г) Комплекс Гольджи.
8. Совокупность химических реакций в результате которых происходит распад органических веществ и высвобождение энергии называют:
А) Катаболизм;
Б) анаболизм;
В) Метаболизм;
Г) Ассимиляция
9. «Списывание» генетической информации с молекулы ДНК путём создания и-РНК называют:
А) Трансляцией;
Б) Транскрипцией;
В) Биосинтезом;
Г) Гликолизом.
10. Процес образования органических веществ на свету в хлоропластах с использованием воды и углекислого газа называют:
А) Фотосинтезом;
Б) Транскрипцией;
В) Биосинтезом;
Г) Гликолизом.
11. Ферментативный и бескислородный процесс распада органических веществ называют:
А) Фотосинтезом;
Б) Транскрипцией;
В) Биосинтезом;
Г) Гликолизом.
12. Назовите основные положения клеточной теории.

Моносахариды (простые сахара) состоят из одной молекулы, содержащей от 3 до 6 атомов углерода. Дисахариды - соединения, образованные из двух моносахаридов. Полисахариды являются высокомолекулярными веществами, состоящими из большого числа (от нескольких десятков до нескольких десятков тысяч) моносахаридов.

Разнообразные углеводы в больших количествах содержатся в организмах. Их основные функции:

  1. Энергетическая: именно углеводы служат основным источником энергии для организма. Среди моносахаридов это фруктоза, широко встречающаяся в растениях (прежде всего в плодах), и особенно глюкоза (при расщеплении одного ее грамма выделяется 17,6 кДж энергии). Глюкоза содержится в плодах и других частях растений, в крови, лимфе, тканях животных. Из дисахаридов необходимо выделить сахарозу (тростниковый или свекловичный сахар), состоящую из глюкозы и фруктозы, и лактозу (молочный сахар), образованную соединением глюкозы и галактозы. Сахароза содержится в растениях (в основном в плодах), а лактоза - в молоке. Они играют важнейшую роль в питании животных и человека. Большое значение в энергетических процессах имеют такие полисахариды, как крахмал и гликоген, мономером которых выступает глюкоза. Они представляют собой резервные вещества растений и животных соответственно. При наличии в организме большого количества глюкозы она используется для синтеза этих веществ, которые накапливаются в клетках тканей и органов. Так, крахмал в больших количествах содержится в плодах, семенах, клубнях картофеля; гликоген - в печени, мышцах. По мере необходимости данные вещества расщепляются, поставляя глюкозу в различные органы и ткани организма.
  2. Структурная: например, такие моносахариды, как дезоксирибоза и рибоза, участвуют в формировании нуклеотидов. Различные углеводы входят в состав клеточных стенок (целлюлоза у растений, хитин у грибов).

Липиды (жиры) - органические вещества, нерастворимые в воде (гидрофобные), но хорошо растворяющиеся в органических растворителях (хлороформе, бензине и др.). Их молекула состоит из глицерина и жирных кислот. Разнообразие последних и обусловливает многообразие липидов. В мембранах клеток широко встречаются фосфолипиды (содержащие, кроме жирных, остаток фосфорной кислоты) и гликолипиды (соединения липидов и сахаридов).

Функции липидов - структурная, энергетическая и защитная.

Структурной основой клеточной мембраны выступает бимолекулярный (образованный из двух слоев молекул) слой липидов, в который встроены молекулы разнообразных белков.

При расщеплении 1 г жиров выделяется 38,9 кДж энергии, что примерно вдвое больше, чем при расщеплении 1 г углеводов или белков. Жиры могут накапливаться в клетках разных тканей и органов (печени, подкожной клетчатке у животных, семенах у растений), в больших количествах образуя значительный запас «топлива» в организме.

Обладая плохой теплопроводностью, жиры играют важную роль в защите от переохлаждения (например, слои подкожного жира у китов и ластоногих).

АТФ (аденозинтрифосфат). Он служит в клетках универсальным энергоносителем. Энергия, выделяющаяся при расщеплении органических веществ (жиры, углеводы, белки и т. д.), не может использоваться непосредственно для выполнения какой-либо работы, а запасается первоначально в форме АТФ.

Аденозинтрифосфат состоит из азотистого основания аденина, рибозы и трех молекул (а точнее, остатков) фосфорной кислоты (рис. 1).

Рис. 1. Состав молекулы АТФ

При отщеплении одного остатка фосфорной кислоты образуется АДФ (аденозиндифосфат) и высвобождается около 30 кДж энергии, которая расходуется на выполнение какой-либо работы в клетке (например, сокращение мышечной клетки, процессы синтеза органических веществ и т. д.):

Так как запас АТФ в клетке ограничен, он постоянно восстанавливается за счет энергии, выделяющейся при расщеплении других органических веществ; восстановление АТФ происходит путем присоединения молекулы фосфорной кислоты к АДФ:

Таким образом, в биологическом преобразовании энергии можно выделить два основных этапа:

1) синтез АТФ - запасание энергии в клетке;

2)высвобождение запасенной энергии (в процессе расщепления АТФ) для совершения работы в клетке.