Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Кортизол. Химическая природа, место синтеза в организме, механизм действия гормона. Биологическая роль в организме. Привести конкретные примеры влияния на регуляторные ферменты. Глюкокортикоиды: кортизол и кортикостерон. Транскортин. Липокортин. Регуляция

Биосинтез и метаболизм кортикостероидов

Общим предшественником кортикостероидов служит холестерол (рис. 11-20).

В митохондриях холестерол превращается в прегненолон при участии гидроксилазы, относящейся к группе цитохромов Р 450 . Цитохром Р 450 , отщепляющий боковую цепь, локализован во внутренней мембране митохондрий. Отщепление боковой цепи холестерола включает 2 реакции гидроксилирования: одна - по атому С 22 , другая - по С 20 . Последующее отщепление шестиуглеродного фрагмента приводит к образованию С 21 -стероида - прегненолона. Дальнейшее превращение прегненолона происходит под действием различных гидроксилаз с участием молекулярного кислорода и NADPH, а также дегидрогеназ, изомераз и лиаз. Эти ферменты имеют различную внутри- и межклеточную локализацию. В коре надпочечников различают 3 типа клеток, образующих 3 слоя, или зоны: клубочковую, пучковую и сетчатую. Каким именно стероидом окажется конечный продукт, зависит от набора ферментов в клетке и последовательности реакций гидроксилиро-вания. Например, ферменты, необходимые для синтеза альдостерона, присутствуют только в клетках клубочковой зоны, а ферменты синтеза глюкокортикоидов и андрогенов локализованы в пучковой и сетчатой зонах.

Путь биосинтеза кортизола. Кортизол синтезируется из холестерола, который в основном поступает из крови в составе ЛПНП или синтезируется в клетках из ацетил-КоА. Значительная часть эфиров холестерола накапливается в цитозоле клеток в липидных каплях. Под влиянием АКТГ происходит активация специфической эстеразы,

Рис. 11-20. Строение и основные этапы синтеза кортикостероидов. 1 - превращение холестерола в прегненолон (гидроксилаза, отщепляющая боковую цепь); 2 - образование прогестерона (3-Ь-гидроксис-тероиддегидрогеназа); 3, 4, 5 - реакции синтеза кортизола (3 - 17-гидроксилаза, 4 - 21-гидроксилаза, 5 - 11-гидроксилаза); 6, 7, 8 - путь синтеза альдостерона

(6 - 21-гидроксилаза, 7 - 11-гидроксилаза, 8 - 18-гидроксилаза, 18-гидроксидегидрогеназа); 9, 10, 11 - путь синтеза тестостерона (9 - 17-гидроксилаза, 10 - 17,20-лиаза, 11 - дегидрогеназа).

и свободный холестерол транспортируется в митохондрии (рис. 11-21).

Синтез кортизола начинается с превращения прегненолона в прогестерон. Эта реакция протекает в цитозоле клеток пучковой зоны коры надпочечников, куда прегненолон транспортируется из митохондрий. Реакцию катализирует 3-β-гидроксистероиддегидрогеназа.

В мембранах ЭР при участии 17-α-гидрок-силазы происходит гидроксилирование про-гес-терона по С 17 с образованием 17-гидрокси-прогестерона. Этот же фермент катализирует превращение прегненолона в 17-гидроксип-регненолон, от которого далее при участии

17,20-лиазы может отщепляться двухуглеродная боковая цепь с образованием С 19 -стероида - дегидроэпиандростерона. 17-гидроксипрогес-терон служит предшественником кортизола, а дегидроэпиандростерон - предшественником андрогенов. Далее 17-ОН-прогестерон гидрок-силируется 21-гидроксилазой (Р 450-С21), локализованной в мембране ЭР, и превращается в 11-дезоксикортизол, который переносится во внутреннюю мембрану митохондрий, где гид-роксилируется при участии цитохрома Р 450-С11 с образованием кортизола.

Скорость синтеза и секреции кортизола стимулируются в ответ на стресс, травму, ин-

Рис. 11-21. Внутриклеточная локализация синтеза кортизола. 1 - аденилатциклазный комплекс; 2 - хо-лестеролэстераза; 3 - протеинкиназа А; 4 - холестеролдесмолаза отщепляет боковую цепь холестерола. ХС - холестерол; ЭХС - эфиры холестерола.

фекцию, понижение концентрации глюкозы в крови. Повышение концентрации кортизола подавляет синтез кортиколиберина и АКТГ по механизму отрицательной обратной связи.

Синтез минералокортикоидов в клетках клу-бочковой зоны коры надпочечников также начинается с превращения холестерола в пре-гненолон, а затем в прогестерон. Прогестерон гидроксилируется вначале по С 21 с образованием 11-дезоксикортикостерона. Следующее гидроксилирование происходит по С 11 , что приводит к образованию кортикостерона, обладающего слабовыраженной глюкокортикоидной и минералокортикоидной активностью.

В клетках клубочковой зоны 17-а-гидроксилаза отсутствует, но есть митохондриальная 18-гид-роксилаза, при участии которой кортикостерон гидроксилируется, а затем дегидрируется с образованием альдегидной группы у С 18 .

Главным стимулом для синтеза альдостерона служит ангиотензин II (см. ниже подраздел V).

Транспорт кортикостероидов. Кортизол в плазме крови находится в комплексе с α-глобулином транскортином и в небольшом количестве в свободной форме. Синтез транскортина протекает в печени и стимулируется эстрогенами.

T 1/2 кортизола составляет 1,5-2 ч. Несвязанный, или свободный кортизол, составляет около 8% от общего количества гормона в плазме и является биологически активной фракцией.

Альдостерон не имеет специфического транспортного белка, но образует слабые связи с альбумином.

Катаболизм гормонов коры надпочечников происходит прежде всего в печени. Здесь протекают реакции гидроксилирования, окисления и восстановления гормонов. Продукты катаболизма кортикостероидов (кроме кортикостерона и альдостерона) выводятся с мочой в форме 17-кетостероидов, образующихся в результате отщепления боковой цепи. Эти продукты метаболизма выделяются преимущественно в виде конъюгатов с глюкуроновой и серной кислотами. 17-Окси- и 17-кетостероиды образуются также при катаболизме половых гормонов, которые имеют у С 17 гидроксиили кетогруппы. У мужчин 2/3 кетостероидов образуется за счёт кортикостероидов и 1/3 за счёт тестостерона (всего 12-17 мг/сут). У женщин 17-кетосте-роиды образуются преимущественно за счёт кортикостероидов (7-12 мг/сут). Определение

17-кетостероидов в моче позволяет оценить как количество глюкокортикоидов, секретируемых корой надпочечников, так и функцию надпочечников.

2. Биологические функции кортикостероидов отличаются широким спектром влияний на процессы метаболизма и подробно рассматриваются в соответствующих разделах.

Важнейший фактор в механизме действия кортикостероидов - взаимодействие их со специфическими рецепторами, расположенными в цитозоле клетки или в ядре. Регуляция внутриклеточных процессов под влиянием кортико-стероидных гормонов проявляется в изменении количества белков, обычно ключевых ферментов метаболизма, путём регуляции транскрипции генов в клетках-мишенях.

Влияние глюкокортикоидов на промежуточный метаболизм связано с их способностью коор-динированно воздействовать на разные ткани и разные процессы, как анаболические, так и катаболические.

Кортизол стимулирует образование глюкозы в печени, усиливая глюконеогенез и одновременно увеличивая скорость освобождения аминокислот - субстратов глюконеогенеза из периферических тканей. В печени кортизол индуцирует синтез ферментов катаболизма аминокислот (аланинаминотрансферазы, триптофанпирро-лазы и тирозинаминотрансферазы и ключевого фермента глюконеогенеза - фосфоенолпиру-ваткарбоксикиназы). Кроме того, кортизол стимулирует синтез гликогена в печени и тормозит потребление глюкозы периферическими тканями. Это действие кортизола проявляется в основном при голодании и недостаточности инсулина (см. ниже подраздел V). У здоровых людей эти эффекты кортизола уравновешиваются инсулином.

Избыточное количество кортизола стимулирует липолиз в конечностях и липогенез в других частях тела (лицо и туловище). Кроме того, глюкокортикоиды усиливают липолитическое действие катехоламинов и гормона роста.

Влияние глюкокортикоидов на обмен белков и нуклеиновых кислот проявляется двояко: в печени кортизол в основном оказывает анаболический эффект (стимулирует синтез белков и нуклеиновых кислот). В мышцах, лимфоид-ной и жировой ткани, коже и костях кортизол тормозит синтез белков, РНК и ДНК и стимулирует распад РНК и белков.

При высокой концентрации глюкокорти-коиды подавляют иммунные реакции, вызывая гибель лимфоцитов и инволюцию лимфоидной ткани; подавляют воспалительную реакцию, снижая число циркулирующих лейкоцитов, а также индуцируя синтез липокортинов, которые инги-бируют фосфолипазу А 2 , снижая таким образом синтез медиаторов воспаления - простагланди-нов и лейкотриенов (см. раздел 8).

Высокая концентрация глюкокортикоидов вызывает торможение роста и деления фибро-бластов, а также синтез коллагена и фибро-нектина (см. раздел 15). Для гиперсекреции глюкокортикоидов типичны истончение кожи, плохое заживление ран, мышечная слабость и атрофия мышц.

Глюкокортикоиды участвуют в физиологическом ответе на стресс, связанный с травмой, инфекцией или хирургическим вмешательством. В этом ответе в первую очередь участвуют кате-холамины, но во многих случаях для проявления их максимальной активности необходимо участие глюкокортикоидов.

Минералокортикоиды стимулируют реабсорб-цию Na + в дистальных извитых канальцах и собирательных трубочках почек. Кроме того, они способствуют секреции К + , NH 4 + в почках, а также в других эпителиальных тканях: потовых железах, слизистой оболочке кишечника и слюнных железах. В организме человека альдостерон - наиболее активный минералокортикоид.

Механизм действия и биологические эффекты альдостерона подробно рассмотрены в подразделе VI этого раздела.

Химическая структура основных стероидных соединений, синтезируемых в надпочечниках, приведена на рис. 52. Различия между ними сводятся к неодинаковой насыщенности атомов углерода и присутствию дополнительных группировок. Для обозначения стероидных гормонов применяют не только систематическую химическую номенклатуру (зачастую весьма громоздкую), но и тривиальные названия.


Рис. 52. Биосинтез стероидов в корковом слое надпочечников.


Исходной структурой для синтеза стероидных гормонов служит холестерин. Количество продуцируемых стероидов зависит от активности ферментов, катализирующих отдельные этапы соответствующих превращений. Эти ферменты локализованы в различных фракциях клетки — митохондриях, микросомах и цитозолt (рис. 53). Холестерин, используемый для синтеза стероидных гормонов, образуется в самих надпочечниках из ацетата и частично поступает в железу с молекулами липопротеинов низкой (ЛПНП) или высокой плотности (ЛПВП), синтезируемыми в печени. Различные источники холестерина в этих клетках по-разному мобилизуются в неодинаковых условиях.



Рис. 53. Внутриклеточные пути биосинтеза стероидов коры надпочечников.


Так, возрастание продукции стероидных гормонов в условиях острой стимуляции АКТГ обеспечивается превращением небольшого количества свободного холестерина, образующегося в результате гидролиза его эфиров. Одновременно возрастает и синтез холестерина из ацетата. При длительной же стимуляции коры надпочечников синтез холестерина, напротив, снижается, а главным его источником становятся липопротеины плазмы (на фоне увеличения числа рецепторов ЛПНП). При абеталипопротеинемии (отсутствие ЛПНП) надпочечники реагируют на АКТГ меньшим, чем в норме, выбросом кортизола.

В митохондриях происходит превращение холестерина в прегненолон, являющийся предшественником всех стероидных гормонов позвоночных. Его синтез — многоэтапный процесс. Он лимитирует скорость биосинтеза надпочечниковых стероидов и является объектом регуляции (со стороны АКТГ, ангиотензина II и калия, см. ниже). В разных зонах коры надпочечника прегненолон подвергается различным превращениям. В клубочковой зоне он преобразуется в основном в прогестерон и далее в 11-дезоксикортикостерон (ДОК), а в пучковой — в 17а-оксипрегне-нолон, служащий предшественником кортизола, андрогенов и эстрогенов. На пути синтеза кортизола из 17а-оксипрегненолона образуется 17а-оксипрогестерон, который последовательно гидроксилируется 21- и 11 (3-гидроксилазами в 11-дезокси-кортизол (кортексолон, или соединение S), а затем (в митохондриях) — в кортизол (гидрокортизон, или соединение F).

Основным продуктом клубочковой зоны коры надпочечников является альдостерон, путь синтеза которого включает промежуточные этапы образования прогестерона, ДОК, кортикостерона (соединение В) и 18-оксикортикостерона. Последний под действием митохондриальной 18-оксистероиддегидрогеназы приобретает альдегидную группировку. Этот фермент присутствует только в клубочковой зоне. С другой стороны, в ней отсутствует 17а-гидроксилаза, что препятствует образованию в этой зоне кортизола. ДОК может синтезироваться во всех трех зонах коры, но наибольшее его количество вырабатывается в пучковой зоне.

Среди продуктов секреции пучковой и сетчатой зон имеются и С-19 стероиды, обладающие андрогенной активностью: дегидроэпиандростерон (ДГЭА), дегидроэпиандростерон-сульфат (ДГЭА-С), андростендион (и его ПВ-аналог) и тестостерон. Все они образуются из 17а-оксипрегненолона. В количественном отношении главными андрогенами надпочечников являются ДГЭА и ДГЭА-С, которые в железе могут превращаться друг в друга. Синтез ДГЭА протекает с участием 17а-гидроксилазы, отсутствующей в клубочковой зоне.

Андрогенная активность надпочечниковых стероидов в основном обусловлена их способностью преобразовываться в тестостерон. Сами надпочечники вырабатывают очень мало этого вещества, равно как и эстрогенов (эстрона и эстрадиола). Однако надпочечниковые андрогены могут служить источником эстрогенов, образующихся в подкожной жировой клетчатке, волосяных фолликулах, молочной железе. В фетальной зоне коры надпочечников 3Р-оксистероиддегидрогеназная активность отсутствует, и поэтому основными продуктами являются ДГЭА и ДГЭА-С, которые превращаются в плаценте в эстрогены, обеспечивая 90 % продукции эстриола и 50 % эстрадиола и эстрона в материнском организме.

Стероидные гормоны коры надпочечников по-разному связываются белками плазмы. Что касается кортизола, то 90-93 % присутствующего в плазме гормона находится в связанном виде. Примерно на 80 % это связывание обусловлено специфическим кортикостероидсвязываюшим глобулином (транскортином), обладающим высоким сродством к кортизолу. Меньшее количество гормона соединено с альбумином и совсем незначительное — с другими белками плазмы.
Транскортин синтезируется в печени. Он представляет собой гликозилированный белок с относительной молекулярной массой около 50000, связывающий у здорового человека до 25 мкг% кортизола.

Поэтому при больших концентрациях гормона уровень свободного кортизола уже не будет пропорционален его общему содержанию в плазме. Так, при общей концентрации кортизола в плазме 40 мкг% концентрация свободного гормона (около 10 мкг%) окажется в 10 раз выше, чем при общем уровне кортизола 10 мкг%. Как правило, транскортин в силу своего наибольшего сродства именно к кортизолу соединяется только с этим стероидом, однако в конце беременности целых 25 % связанного транскортином стероида представлено прогестероном. Характер стероида в комплексе с транскортином может меняться и при врожденной гиперплазии надпочечников, когда последние вырабатывают большие количества кортикостерона, прогестерона, 11-дезоксикортизола, ДОК и 21-дезоксикортизола.

Большинство синтетических глюкокортикоидов слабо соединены с транскортином. Его уровень в плазме регулируется различными (в том числе и гормональными) факторами. Так, эстрогены повышают содержание этого белка. Аналогичным свойством обладают и тиреоидные гормоны. Повышение уровня транскортина отмечено при сахарном диабете и ряде других заболеваний. Например, печеночные и почечные (нефроз) изменения сопровождаются снижением содержания транскортина в плазме. Синтез транскортина может тормозиться и глюкокортикоидами. Генетически обусловленным колебаниям уровня этого белка обычно не сопутствуют клинические проявления гипер- или гипокортицизма.

В отличие от кортизола и ряда других стероидов альдостерон не взаимодействует специфически с белками плазмы. Он лишь очень слабо связан с альбумином и транскортином, а также с эритроцитами. В физиологических условиях с белками плазмы соединено только около 50 % всего количества гормона, причем 10 % его ассоциировано с транскортином. Поэтому при повышении уровня кортизола и полном насыщении им транскортина уровень свободного альдостерона может меняться незначительно. Связь альдостерона с транскортином более прочна, чем с другими белками плазмы.

Надпочечниковые андрогены, за исключением тестостерона, связываются преимущественно альбумином, причем достаточно слабо. Тестостерон же почти полностью (на 98 %) специфически взаимодействует с тестостерон-эстрадиолсвязывающим глобулином. Концентрация последнего в плазме возрастает под влиянием эстрогенов и тиреоидных гормонов и снижается под действием тестостерона и СТГ.

Гидрофобные стероиды фильтруются почками, но почти целиком (95 % кортизола и 86 % альдостерона) реабсорбируются в канальцах. Для их выделения с мочой необходимы ферментативные превращения, увеличивающие их растворимость. Они сводятся в основном к переходу кетоновых групп в карбоксильные и С-21 -групп в кислые формы. Гидроксильные группы способны взаимодействовать с глюкуроновой и серной кислотами, что еще более увеличивает водорастворимость стероидов.

Среди многих тканей, в которых происходит их метаболизм, важнейшее место занимает печень, а при беременности — и плацента. Часть метаболизированных стероидов попадает в содержимое кишечника, откуда они могут реабсорбироваться в неизмененном или модифицированном виде.

Исчезновение кортизола из крови происходит с полупериодом 70-120 мин (в зависимости от вводимой дозы). За сутки в мочу попадает около 70 % меченого гормона; за 3 сут с мочой выводится уже 90 % такого гормона. Примерно 3 % обнаруживается в кале. Неизмененный кортизол составляет менее 1 % экскретируемых меченых соединений. Первым важным этапом деградации гормона является необратимое восстановление двойной связи между 4-м и 5-м углеродными атомами. В результате этой реакции образуется в 5 раз больше 5сх-дигидрокортизола, чем его 5В-формы. Под действием 3-оксистероиддегидрогеназы эти соединения быстро превращаются в тетрагидрокортизол. Окисление 11 В-гидроксильной группы кортизола приводит к образованию кортизона. В принципе, это превращение обратимо, но в силу меньшего количества кортизона, продуцируемого надпочечниками, оно сдвинуто в сторону образования именно данного соединения.

Последующий метаболизм кортизона происходит как у кортизола и проходит стадии дигидро- и тетрагидроформ. Поэтому соотношение между этими двумя веществами в моче сохраняется и для их метаболитов. Кортизол, кортизон и их тетрагидропроизводные могут подвергаться и другим превращениям, включая образование кор-толов и кортолонов, кортоловой и кортолоновой кислот (окисление в 21м положении) и окисление боковой цепи в 17-м положении. Могут образовываться и 6в-гидроксилированные метаболиты кортизола и других стероидов. У детей, а также при ряде патологических состояний этот путь метаболизма кортизола приобретает основное значение. 5-10 % метаболитов кортизола являются С-19, 11-окси и 17-кетостероидами.

Период полужизни альдостерона в плазме не превышает 15 мин. Он почти полностью извлекается печенью уже за один пассаж крови, и в моче обнаруживается менее 0,5 % нативного гормона. Около 35 % альдостерона выводится в виде глюкуронида тетрагидроальдостерона, а 20 % — глюкуронида альдостерона. Этот метаболит называют кислотолабильным, или 3-оксо-конъюгатом. Часть гормона обнаруживается в моче в виде 21-дезокситетрагидроальдостерона, который образуется из экскретируемого с желчью тетрагидроальдостерона под действием кишечной флоры и вновь всасывается в кровь.

За один пассаж крови через печень элиминируется более 80 % андростендиона и всего около 40 % тестостерона. В мочу попадают в основном конъюгаты андрогенов. Небольшая доля их экскретируется через кишечник. ДГЭА-С может выводиться в неизмененном виде. ДГЭА и ДГЭА-С способны к дальнейшему метаболизму через гидроксилирование в 7-м и 16-м положениях или превращение 17-кетогруппы в 17-оксигруппу. ДГЭА необратимо трансформируется и в андростендион.

Последний может превращаться в тестостерон (главным образом вне печени), а также в андростерон и этиохоланолон. Дальнейшее восстановление этих стероидов приводит к образованию андростандиола и этиохоландиола. Тестостерон в тканях-«мишенях» превращается в 5сх-дигидротестостерон, который необратимо инактивируется, превращаясь в Зa-андростандиол, или обратимо — в 5сх-андро-стендион. Оба эти вещества могут трансформироваться в андростерон.

Каждый из перечисленных метаболитов способен образовывать глюкурониды и сульфаты. У мужчин тестостерон и андростендион исчезают из плазмы в 2-3 раза быстрее, чем у женщин, что, вероятно, объясняется влиянием половых стероидов на уровень тестостерон-эстрадиолсвязывающего белка в плазме.

Систематическое (МСТПХ) название:

(11β)-11,17,21-тригидроксипрегн-4-ен-3,20-дион

Клинические данные:

    Австралия: A

    США: C (риск не исключен)

Юридический статус:

    Австралия: Отпускается только в аптеках

    Великобритания: Отпуск только по рецепту (POM)

    США: отпускается без рецепта для местного применения; только по рецепту для пероральных таблеток, ректального использования и внутривенной терапии

Способы приема:

    Пероральный прием в виде таблеток, внутривенный, местный, ректальный

Химические данные:

    Формула:C21H30O5

    Молекулярная масса:362,460 г/моль

Кортизол представляет собой стероидный гормон, принадлежащий к классу глюкокортикоидных гормонов, вырабатывается у людей пучковой зоной коры в надпочечниках. Он высвобождается в ответ на стресс и низкий уровень глюкозы в крови. Его функции заключаются в повышении уровня глюкозы в крови посредством глюконеогенеза, подавлении иммунной системы и способствовании обмену жиров, белков и углеводов. Также снижает образование костной ткани. Гидрокортизон (МНН, непатентованное название в США, Британское общепринятое название) – это название кортизола при использовании в качестве лекарственного препарата. Гидрокортизон используется для лечения людей, которые страдают нехваткой кортизола естественного происхождения. Он включен в Перечень препаратов первой необходимости ВОЗ, требуемых для основных систем здравоохранения.

Основные функции в организме

Метаболическая реакция

При начальном состоянии голодания кортизол стимулирует глюконеогенез (образование глюкозы) и активирует антистрессовые и противовоспалительные пути. Кортизол также играет важную, но косвенную, роль в печеночном и мышечном гликогенолизе, расщеплении гликогена на глюкозу-1-фосфат и глюкозу. Это осуществляется посредством его пассивного влияния на глюкагон. Кроме того, кортизол способствует активации гликоген фосфорилазы, которая необходима для оказания эпинефрином действия на гликогенолиз. При позднем состоянии голодания функция кортизола незначительно меняется, повышается гликогенез. Данная реакция дает возможность печени поглощать глюкозу, которая не используется периферийной тканью и возвращается в гликогеновые запасы печени с целью использования, если организм перейдет в состояние голодания. Повышенный уровень кортизола, если держится продолжительное время, может привести к протеолизу (расщеплению белков) и мышечной атрофии. Несколько исследований показало, что кортизол может обладать липолитическим действием (способствовать расщеплению жиров). В некоторых условиях, тем не менее, кортизол может в некоторой степени подавлять липолиз.

Иммунная реакция

Кортизол предотвращает высвобождение веществ в организме, которые вызывают воспаление. Он используется в лечении состояний, возникающих в результате избыточной активности B-клеток, обусловливающих гуморальную реакцию. Примеры включают воспаление и ревматоидные заболевания, а также аллергические реакции. Гидрокортизон с низкой потенцией, доступный в некоторых странах в качестве отпускаемого без рецепта препарата, используется для лечения проблем с кожей, таких как сыпи и экзема. Он ингибирует выработку интерлейкина (ИЛ)-12, интерферона (IFN)-гамма, IFN-альфа и фактора некроза опухолей-альфа с помощью антигенпредставляющих клеток (АПК) и T клеток-помощников (Th)1, но повышает выработку ИЛ-4, ИЛ-10 и ИЛ-13 клетками Th2. Данные результаты скорее смещаются в сторону иммунной реакции Th2, чем общей иммуносупрессии. Активация стрессового состояния (и как результат повышение уровня кортизола и сдвиг в сторону Th2), наблюдаемая во время инфекции, предположительно представляет собой защитный механизм, который предотвращает избыточную активацию воспалительной реакции. Кортизол может ослаблять активность иммунной системы. Кортизол предотвращает пролиферацию T-клеток посредством активации вырабатывающих интерлейкин-2 T-клеток, не реагирующих на интерлейкин-1 (ИЛ-1) и неспособных вырабатывать фактор роста T-клеток (ИЛ-2). Кортизол также обладает действием негативной обратной связи на интерлейкин-1. Хотя ИЛ-1 полезен в борьбе с некоторыми заболеваниями, тем не менее, эндотоксические бактерии получают преимущество посредством принуждения гипоталамуса повышать уровень кортизола (принудительный вызов секреции кортикотропин-релизинг гормона и, таким образом, противодействие ИЛ-1). Супрессорные клетки не поддаются действию глюкостероидного модифицирующего реакцию фактора (GRMF), таким образом, эффективное пороговое значение для иммунных клеток может быть даже выше, чем пороговое значение для физиологических процессов (отражающих перегруппировку лейкоцитов в лимфатических узлах, костном мозге и коже). Неотложный прием кортикостерона (эндогенного агониста рецепторов типа I и типа II) или RU28362 (агонист рецептора специфического типа II) адреналэктомированными животными вызывает изменение распределения лейкоцитов. Естественные клетки-киллеры подвергаются действию кортизола. Кортизол стимулирует многие медьсодержащие ферменты (часто до 50% от их общего потенциала), возможно, повышая доступность меди для иммунных целей. Они включают лизилоксидазу, фермент, который поперечно связан с коллагеном, и эластин. Особенно важным для иммунной реакции является стимулирование кортизолом супероксиддисмутазы, поскольку данный медьсодержащий фермент определенно используется организмом с целью обеспечения возможности супероксидов заражать бактерии.

Другие воздействия

Обмен веществ

Глюкоза

Кортизол противодействует инсулину, способствуя вызывающему гипергликемию печеночному глюконеогенезу, и ингибирует периферийное использование глюкозы (инсулиновая резистентность) посредством снижения перемещения переносчиков глюкозы (в особенности, GLUT4) к клеточной мембране. Тем не менее, кортизол повышает синтез гликогена (гликогенез) в печени. Премиссивное действие кортизола на функцию инсулина в печеночном гликогенезе наблюдалось в культуре гепатоцитов в лаборатории, хотя механизм данного действия не известен.

Кости и коллаген

Кортизол снижает образование костей, способствуя долговременному развитию остеопороза (прогрессирующее заболевание костей). Он перемещает калий из клеток в обмен на равное количество ионов натрия (смотри выше). Это может инициировать гиперкалиемию метаболического шока в результате хирургической операции. Кортизол также снижает абсорбцию кальция в кишечнике. Коллаген представляет собой важную составляющую соединительной ткани. Он жизненно необходим для опорно-двигательного аппарата и обнаруживается в мышцах, сухожилиях и суставах, а также по всему организму. Кортизол снижает синтез коллагена.

Аминокислоты

Кортизол повышает уровень свободных аминокислот в сыворотке. Он осуществляет это посредством ингибирования образования коллагена, снижая поглощение аминокислот мышцами и ингибируя синтез белков. Кортизол (как и оптикортинол) может обратимо ингибировать клетки-предшественницы иммуноглобулина A в кишечнике телят. Кортизол также ингибирует иммуноглобулин A в сыворотке, как это делает иммуноглобулин M; тем не менее, он не ингибирует иммуноглобулин E.

Заживление ран

Кортизол и стрессовая реакция обладают отрицательным действием на иммунную систему. Высокий уровень воспринимаемого стресса и повышенный уровень кортизола увеличивает время заживления ран у здоровых взрослых мужчин. У тех, кто имеет пониженный уровнем кортизола, следующий день после 4 мм пункционной биопсии демонстрирует наиболее быструю скорость заживления. У студентов стоматологии раны от пункционной биопсии заживали в среднем на 40% дольше при выполнении биопсии тремя днями ранее по сравнению с биопсией, выполненной в отношении тех же самых студентов во время летних каникул.

Электролиты и водный баланс

Кортизол действует как диуретик, повышая водный диурез, уровень гломерулярной фильтрации и ренальный поток плазмы из почек, а также повышая поглощение воды и выведение калия в кишечнике.

Натрий

Кортизол ингибирует выделение натрия из тонкого кишечника млекопитающих. Распад натрия, тем не менее, не оказывает влияние на уровень кортизола, таким образом, кортизол не может использоваться с целью регулирования уровня натрия в сыворотке. Изначальная цель кортизола может заключаться в переносе натрия. Данная гипотеза поддерживается фактом, что пресноводные рыбы используют кортизол в целях стимулирования поступления натрия внутрь, в то время как обитающие в соленой воде рыбы обладают основанной на кортизоле системой для выведения избыточного натрия.

Калий

Натриевая нагрузка усиливает интенсивное выведение калия кортизолом. Кортикостерон в данном случае сопоставим с кортизолом. Чтобы вывести калий из клетки, кортизол перемещает в клетку равное количество натрия. Это должно сделать регуляцию pH более легкой (в отличие от обычной ситуации дефицита калия, в которой два иона натрия вводится в клетку на каждые три иона калия, которые выводятся,-действие близко к деоксикортикостерону).

Желудочная и почечная секреция

Кортизол стимулирует секрецию желудочного сока. Исключительно прямое действие кортизола на выведение ионов водорода из почек заключается в стимулировании выведения ионов аммония посредствам деактивации почечного фермента глутаминазы.

Память

Кортизол действует посредством эпинефрина (адреналина) с целью создания памяти о краткосрочных эмоциональных событиях; это представляет собой предполагаемый механизм хранения ярких воспоминаний и может выступать в качестве механизма для запоминания того, чего следует избегать в будущем. Тем не менее, долговременное воздействие кортизола повреждает клетки гиппокампа; данное повреждение приводит к нарушению способности к научению. Более того, было выявлено, что кортизол ингибирует извлечение из памяти уже хранящейся информации.

Сон, стресс и депрессия

У людей были обнаружены суточные циклы уровня кортизола. Что касается людей, количество кортизола, представленное в крови, подвержено суточному колебанию; максимальный уровень наблюдается ранним утром (приблизительно в 8 часов утра) и достигает минимального уровня примерно с полуночи до 4 часов утра либо спустя от трех до пяти часов после начала сна. Информация относительно цикла дня и ночи передается от сетчатки к парным супрахиазматическим ядрам в гипоталамусе. Данный паттерн не наблюдается при рождении; расчетные данные, когда он появляется, варьируются от возраста двух недель до девяти месяцев. Измененные паттерны уровня кортизола в сыворотке наблюдаются в связи с отклоняющимся от нормы уровнем адренокортикотропина, клинической депрессией, психологическим стрессом и физиологическими стрессовыми факторами, такими как гипогликемия, болезнь, жар, травма, хирургическая операция, страх, боль, физическое напряжение или экстремальные температуры. Уровень кортизола также может отличаться у субъектов с аутизмом или синдромом Аспергера. Также существуют значительные индивидуальные различия, хотя обычно люди демонстрируют устойчивые ритмы.

Действие во время беременности

Во время беременности у людей повышенная выработка кортизола у плода с 30 по 32 неделю запускает выработку у плода легочного сурфактанта для содействия созреванию легких. У плода овцы глюкокортикоиды (преимущественно кортизол) повышаются приблизительно после 130 дня, при этом легочный сурфактант значительно повышается в ответ примерно после 135 дня, и, хотя кортизол эмбрионов овцы большей частью материнского происхождения в течение первых 122 дней, 88 процентов или более становится эмбрионального происхождения после 136 дня беременности. Хотя временной период роста концентрации кортизола эмбриона у овец может в некоторой степени варьироваться, он составляет в среднем 11,8 дней до начала родового акта. У нескольких видов домашнего скота (например, корова, овца, коза и свинья) всплеск уровня кортизола у эмбриона в конце беременности запускает родовой акт посредством устранения прогестерона, блокирующего растяжение шейки матки и миометральные сокращения. Механизмы, обеспечивающие данное действие на прогестерон, различаются среди видов. У овец, когда прогестерон, достаточный для поддержания беременности, вырабатывается плацентой приблизительно после 70 дня беременности, всплеск предродового кортизола эмбриона запускает плацентарное ферментативное превращение прогестерона в эстроген. (Повышенный уровень эстрогена стимулирует секрецию простагландина и развитие рецептора окситоцина). Воздействие кортизола на эмбрион во время беременности может давать множество связанных с развитием результатов, включая изменение предродовых и послеродовых картин роста. У игрунок, вида американских приматов, беременные самки имеют колеблющийся уровень кортизола во время беременности, как у плода, так и у самой самки. Мусто и др. (2012 г.) показали, что младенцы, рожденные от матерей с высоким уровнем кортизола во время первого триместра беременности, имеют более низкую скорость роста индекса массы тела (BMI), чем рожденные от матерей с низким уровнем кортизола во время беременности (приблизительно на 20% ниже). Тем не менее, послеродовая скорость роста у младенцев матерей с высоким уровнем кортизола более высокая, чем у рожденных от матерей с низким уровнем кортизола в поздние послеродовые периоды времени, а завершение наверстывания роста происходит с возраста 540 дней. Эти результаты свидетельствуют, что воздействие кортизола на плод во время беременности обладает важным потенциалом программирующего действия на до- и послеродовой рост детеныша приматов.

Синтез и высвобождение

Кортизол вырабатывается в организме человека пучковой зоной надпочечника, вторым из трех слоев, составляющих кору надпочечника. Верхний слой образует внешнюю «кору» каждого надпочечника, располагаясь поверх почек. Высвобождение кортизола контролируется гипоталамусом, регионом головного мозга. Секреция кортикотропин-релизинг гормона (CRH) гипоталамусом заставляет клетки в близлежащей передней доле гипофиза выделять другой гормон, адренокортикотропный гормон (АКТГ), в сосудистую систему, посредством которой кровь переносит его в кору надпочечника. АКТГ стимулирует синтез кортизола, глюкокортикоидов, минералокортикоидов и дегидроэпиандротестостерона (ДГЭА).

Нормальный уровень

Нормальные значения в отношении человека приведены в следующих таблицах (нормы варьируются среди видов). Измеряемый уровень кортизола и, вследствие этого, диапазоны нормальных значений, зависят от применяемого аналитического метода и факторов, таких как пол и возраст. По этой причине результаты анализов всегда должны интерпретироваться с использованием диапазона нормальных значений лаборатории, в которой получены результаты. При использовании молекулярного веса в 362,460 г/моль, коэффициент перевода из мкг/дл в нмоль/л приблизительно составит 27,6; таким образом, 10 мкг/дл приблизительно будут равны 276 нмоль/л.

Нарушения выработки кортизола

    Повышенный уровень кортизола: избыточный уровень кортизола в крови.

    Пониженный уровень кортизола: недостаточный уровень кортизола в крови.

Нарушения выработки кортизола, а также некоторые вытекающие состояния, включают:

    Первичный повышенный уровень кортизола (синдром Кушинга)

    Первичный пониженный уровень кортизола (болезнь Аддисона, синдром Нельсона)

    Вторичный повышенный уровень кортизола (гипофизарная или эктопированная опухоль, болезнь Кушинга, ложный синдром Кушинга)

    Вторичный пониженный уровень кортизола (гипофизарная опухоль, синдром Шихана)

Регулирование

Первичное регулирование кортизола осуществляется гипофизарным пептидом, адренокортикотропным гормоном (АКТГ). АКТГ, предположительно, контролирует кортизол посредством управления движением кальция в секрецирующих кортизол мишеневидных клетках. АКТГ, в свою очередь, контролируется гипоталамическим пептидом кортикотропин-релизинг гормоном (CRH), который находится под нервным контролем. Кортикотропин-релизинг гормон действует синергично с аргинин вазопрессином, ангиотензином II и эпинефрином. (у свиней, у которых не вырабатывается аргинин вазопрессин, синергично с кортикотропин-релизинг гормоном действует лизин вазопрессин. ) Когда активированные макрофаги начинают выделять интерлейкин-1 (ИЛ-1), который синергично с CRH повышает уровень АКТГ, T-клетки также выделяют модифицирующий глюкостероидную реакцию фактор (GRMF или GAF), а также ИЛ-1; оба повышают количество кортизола, необходимо для ингибирования практически всех иммунных клеток. Иммунные клетки затем приобретают свою собственную регуляцию, но более высокое пороговое значение кортизола. Повышение уровня кортизола у диарейных телят минимально по сравнению со здоровыми телятами и со временем падает. Клетки не утрачивают полностью свое преимущество «борьбы или бегства», потому что интерлейкин-1 синергичен с CRH. Кортизол даже обладает эффектом негативной обратной связи на интерлейкин-1, что особенно полезно для лечения заболеваний, который вынуждают гипоталамус выделять слишком много CRH, такие как вызываемые эндотоксическими бактериями заболевания. Супрессорные иммунные клетки не поддаются действию GRMF, таким образом, эффективное предельное значение для иммунных клеток может быть даже выше, чем предельное значение для физиологических процессов. GRMF (в данном отношении известный как GAF) влияет преимущественно на печень (а не на почки) в целях некоторых физиологических процессов. Посредник с высоким содержанием калия (который стимулирует секрецию альдостерона в лабораторных условиях) также стимулирует секрецию кортизола из пучковой зоны собачьих надпочечников - в отличие от кортикостерона, в отношении которого калий не обладает действием. Калиевая нагрузка также повышает уровень АКТГ и кортизола у людей. Это предположительно является причиной того, почему дефицит калия вызывает снижение уровня кортизола (как упоминалось) и снижает преобразование 11-деоксикортизола в кортизол. Это также может играть роль в боли ревматоидного артрита; уровень калия в клетках всегда низок при ревматоидном артрите.

Факторы, снижающие уровень кортизола

Факторы, повышающие уровень кортизола

Фармакология

Гидрокортизон представляет собой фармацевтическое понятие для обозначения кортизола, применяемого для перорального приема, внутривенных инъекций или местного нанесения. Он используется в качестве иммуносупрессорного препарата, применяемого посредством инъекций для лечения тяжелых аллергических реакций, таких как анафилактический шок и отек Квинке, вместо преднизолона у пациентов, нуждающихся в стероидном лечении, но неспособных принимать пероральные лекарственные препараты, и периоперативно у пациентов, находящихся на долговременном стероидном лечении, с целью предотвращения аддисонического криза. Он может применяться местно при аллергических сыпях, дерматите, псориазе и других определенных воспалительных заболеваниях кожи. Он также может вводиться в суставы, воспаленные в результате таких заболеваний как подагра. Флутиказона пропионат представляет собой кортикостероид, применяемый в назальных спреях и ингаляторах при астме. По сравнению с гидрокортизоном, преднизолон практически в четыре раза сильнее, а дексаметазон сильнее примерно в сорок раз в отношении противовоспалительного действия. Крема и мази гидрокортизона для местного применения доступны во многих странах без рецепта в концентрации в диапазоне от 0,05% до 2,5% (в зависимости от местных норм), при этом формы с более высокой концентрацией отпускаются только по рецепту. Закрытие кожи после нанесения повышает абсорбцию и усиливает действие. Иногда такой метод предписывается врачом, но в иных случаях этого следует избегать для предотвращения передозировки и системного эффекта.

Связывание с белком

Большая часть сывороточного кортизола (практически 4%) связывается с белками, включая кортикостероид-связывающий глобулин (CBG) и сывороточный альбумин. Свободный кортизол с легкостью проходит через клеточные мембраны, где он внутриклеточно связывается с рецепторами кортизола.

Биохимия

Биосинтез

Кортизол синтезируется из холестерина. Синтез происходит в пучковой зоне коры надпочечника. (Название кортизол получено от слова кортекс, кора). В то время как кора надпочечника также вырабатывает альдостерон (в клубочковой зоне) и некоторые половые гормоны (в сетчатой зоне), кортизол представляет собой ее основной секрет у людей и нескольких других видов. (Тем не менее, у домашнего скота, уровень кортикостерона близок или превышает уровень кортизола). Медуллярное вещество надпочечника находится под корой, в основном выделяя катехоламины адреналин (эпинефрин) и норадреналин (норэпинефрин) в условиях симпатической стимуляции. Синтез кортизола в надпочечниках стимулируется передней долей гипофиза за счет адренокортикотропного гормона (АКТГ); выработка АКТГ, в свою очередь, стимулируется кортикотропин-релизинг гормоном (CRH), который высвобождается гипоталамусом. АКТГ повышает концентрацию холестерина во внутренней митохондриальной мембране посредством регуляции белка STAR (стероидогенного острого регуляторного белка). Он также стимулирует основной ограниченный по скорости этап синтеза кортизола, в котором холестерин преобразуется в прегненолон и катализируется цитохромом P450SCC (расщепляющий боковую цепь фермент).

Метаболизм

Кортизол метаболизируется системой 11-бета гидроксистероидной дегидрогеназы (11-бета HSD), которая состоит из двух ферментов: 11-бета HSD1 и 11-бета HSD2.

    11-бета HSD1 использует кофактор НАДФН для преобразования биологически инертного кортизона в биологически активный кортизол

    11-бета HSD2 использует кофактор НАД+ для преобразования кортизола в кортизон

В целом, суммарный эффект заключается в том, что 11-бета HSD1 способствует повышению локальных концентраций биологически активного кортизола в данной ткани; 11-бета HSD2 способствует снижению локальных концентраций биологически активного кортизола. Кортизол также метаболизируется в 5-альфа тетрагидрокортизол (5-альфа THF) и 5-бета тетрагидрокортизол (5-бета THF), в данных реакциях 5-альфа редуктаза и 5-бета редуктаза представляют собой ограничивающие скорость факторы соответственно. 5-бета редуктаза также представляет собой ограничивающий скорость фактор в преобразовании кортизона в тетрагидрокортизон (THE). Изменение 11-бета HSD1 играет роль в патогенезе ожирения, гипертензии и инсулиновой резистентности, известных как метаболический синдром. Изменение 11-бета HSD2 имеет отношение к гипертонической болезни и приводит к синдрому выраженного избытка минералокортикоидов (SAME).

Стрессовые ситуации могут оказывать как отрицательное так и положительное влияние на человека.

Кортизол подготавливает организм к действию стресса, мобилизует ресурсы . При опасности гормон способствует увеличению концентрации и скорость принятия решений. Синтезируется в пучковой зоне коры надпочечников.

Циркадный ритм: максимальный уровень кортизола - в 8 часов утра, минимальный - в вечернее время. Устойчив к привычному суточному ритму, меняется при смене часового пояса спустя 15 дней.

Функции гормона — влияния на организм

Гормон кортизол постоянно присутствует в организме человека в определенных количествах. Высокая концентрация глюкокортикоида фиксируется утром, чтобы снабдить работоспособность организма. Вечером уровень вещества снижается, это необходимо для обеспечения полноценного сна, . Под действием гормона:

  • стабилизируется артериальное давление;
  • регулируется сахарное равновесие в крови;
  • нормализуется водный и минеральный баланс;
  • обеспечивается адекватная реакция организма на действие стрессовых факторов;
  • помогает запустить организм утром.

Активный синтез кортизола начинается в стрессовой ситуации , для организма это сигнал опасности. Под действием гормона надпочечников:

  • человек испытывает прилив сил;
  • у него улучшается память;
  • снижается порог болевой чувствительности;
  • повышается устойчивость к воспалительным процессам;
  • в случае экстремальной ситуации, помогает выжить.

Причины повышения и понижения уровня гормона

Гидрокортизон положительно влияет на организм, если его показатели в пределах нормы . Его значительное повышение физиологически обосновано при стрессе, срочной адаптации, беременности и во время родов. Факторы, которые вызывают длительные изменения концентрации гормона и увеличивают риск развития серьезных патологий. С повышением уровня вещества связаны:

  • постоянное нервное напряжение;
  • изнурительные тренировки;
  • голодание;
  • злоупотребление спиртными напитками;
  • лишний вес;
  • употребление большого количества кофе и других тонизирующих жидкостей;
  • поликистоз яичников.

Понижение концентрации глюкокортикоида вызывают:

Влияния низкого и высокого уровня гормона на организм

Состояние, когда кортизол превышает нормы в течение длительного времени, представляет опасность для организма. Под действием гормона организм получает «быструю» энергию. Активное вещество повышает концентрацию глюкозы в крови за счет и белков. В результате мышечная система разрушается и слабеет.

К последствиям действия высокого кортизола относятся:

  • раздражительность;
  • бессонница;
  • слабый иммунитет;
  • сбой обменных реакций;
  • увеличение риска развития сахарного диабета;
  • замедление процессов регенерации;
  • потеря синаптических связей между нейронами.

Низкий кортизол вызывает:

Происходят гораздо чаще, чем у мужчин. Это связано с их повышенной эмоциональностью, чувствительностью. Женщины в погоне за идеальными формами, практикуют различные диеты. Их результатом чаще становится гормональный сбой, нарушение обменных процессов и прибавка в весе.

Норма кортизола для женщин очень важна. Длительные отклонения от референсных значений приводят к бесплодию, поликистозу яичников .

Спортсменам, которые принимают анаболические стероиды, могут провоцировать «кортизоловый удар». Происходит выброс большого количества стрессового гормона в кровь. Этот феномен возникает при резком прекращении приема препаратов, а также на фоне снижения концентрации тестостерона.

Норма кортизола

Норма кортизола в крови не зависит от принадлежности к полу (исключение беременность):


Во время беременности кортизол у женщин повышается в 3-5 раз. Это физиологическая норма. В период вынашивания ребенка организм нуждается в адаптации и дополнительной энергии. Его жизнедеятельность происходит в непривычном режиме.

Высокое содержание во время беременности и после родов

Реакция организма на стресс при беременности дополняет функции кортизола:

  • организм женщины получает дополнительную энергию, при этом показатели глюкозы в крови остаются в пределах нормы;
  • вещество оказывает действие на другие гормоны, обладающие сосудосуживающими свойствами;
  • снижается гиперчувствительность организма на любые факторы, которые могут вызвать воспалительные процессы;
  • изменяется качественный состав крови – уменьшается количество лимфоцитов, увеличивается содержание некоторых видов лейкоцитов, эритроцитов, тромбоцитов.

Сильнейшим стрессом не только для женщины, но и для ребенка являются роды. Кора надпочечников плода на последних неделях беременности секретирует большое количество данного вещества.

Заболевания и кортизол

При стрессе действие кортизола дифференцировано. Он активизирует деятельность одних физиологических систем и тормозит функции других. Нервная система, кровеносная, дыхательная, опорно-двигательная функционируют на максимуме возможностей. Работа иммунной, пищеварительной, мочевыделительной, половой временно приостанавливаются.

Эта особенность действия гидрокортизона объясняет факты возникновения различных инфекционных заболеваний, расстройств пищеварения.

В стрессовой ситуации человек не чувствует потребности в еде, сне, отдыхе. Следствием этого является массовая гибель клеток. Интенсивная работа сердца в стрессовой ситуации может стать причиной инфаркта . После пережитого стресса страдает кора головного мозга. У человека, который испытал сильнейшее нервное потрясение, развивается амнезия.

При проявлении признаков нарушения концентрации кортизола (хронического стресса) необходимо посетить врача эндокринолога, чтобы снизить риск развития необратимых патологических изменений.

Адреналин и кортизол

Механизм действия кортизола подобен . Все они изменяют деятельность физиологических систем организма, протекание биохимических реакций, чтобы защитить организм от разрушающего действия стрессовых факторов.

Действие кортизола и адреналина имеет специфику. Адреналин относится к нейрогормонам, его влияние проявляется во внезапно возникших стрессовых ситуациях. Он быстро выбрасывается в кровь и также быстро исчезает.

Кортизол больше связано с «плановыми» стрессами. Например, утреннее пробуждение. К этому часу организм уже подготовлен – концентрация кортизола максимальна.

Инсулин и кортизол

Кортизол оказывает влияние на уровень инсулина:

  1. Повышение кортизола вызывает снижение инсулина и наоборот.
  2. Инсулин обеспечивает усвоение мышцами аминокислот. Увеличенный кортизол нарушает питание мышц за счет снижения чувствительности клеток к инсулину.
  3. Уровень глюкозы в крови усиливается под действием кортизола, инсулин снижает ее концентрацию.

Механизм действия гормона

Выделившийся в кровь кортизол достигает клеток-мишеней (в частности, клеток печени). Благодаря своей липофильной природе легко проникает через клеточную мембрану в цитоплазму и ядро, где связывается со специфическими рецепторами. Гормон-рецепторный комплекс является фактором транскрипции, - активирует транскрипцию определённых участков ДНК. В результате синтез глюкозы в гепатоцитах усиливается, тогда как в мышцах снижается распад глюкозы. В клетках печени глюкоза запасается в виде гликогена. Таким образом, эффект кортизола состоит в сохранении энергетических ресурсов организма.

Из чего синтезируется гормон

Кортизол синтезируется из холестерола, который в основном поступает из крови в составе ЛПНП или синтезируется в клетках из ацетил-КоА. Значительная часть эфиров холестерола накапливается в цитозоле клеток в липидных каплях. Под влиянием АКТГ происходит активация специфической эстеразы, и свободный холестерол транспортируется в митохондрии.

Строение и основные этапы синтеза кортикостероидов:

  • 1 - превращение холестерола в прегненолон (гидроксилаза, отщепляющая боковую цепь);
  • 2 - образование прогестерона (3-в-гидроксистероиддегидрогеназа);
  • 3,4,5 - реакции синтеза кортизола (3 - 17-гидроксилаза, 4 - 21-гидроксилаза, 5 - 11-гидроксилаза);
  • 6, 7, 8 - путь синтеза альдостерона (6 - 21-гидроксилаза, 7 - 11-гидроксилаза, 8 - 18-гидроксилаза, 18-гидроксидегидрогеназа);
  • 9,10,11 - путь синтеза тестостерона (9 - 17-гидроксилаза, 10 - 17,20-лиаза, 11 - дегидрогеназа).

Синтез кортизола начинается с превращения прегненолона в прогестерон. Эта реакция протекает в цитозоле клеток пучковой зоны коры надпочечников, куда прегненолон транспортируется из митохондрий. Реакцию катализирует 3-в-гидроксистероиддегидрогеназа.

В мембранах ЭР при участии 17-б-гидроксилазы происходит гидроксилирование прогестерона по С 17 с образованием 17-гидроксипрогестерона. Этот же фермент катализирует превращение прегненолона в 17-гидроксипрегненолон, от которого далее при участии 17,20- лиазы может отщепляться двухуглеродная боковая цепь с образованием С 19 -стероида - дегидроэпиандростерона. 17 -гидроксипрогестерон служит предшественником кортизола, а дегидроэпиандростерон - предшественником андрогенов. Далее 17-ОН-прогестерон гидроксилируется 21-гидроксилазой (P 450-C21), локализованной в мембране ЭР, и превращается в 11-дезоксикортизол, который переносится во внутреннюю мембрану митохондрий, где гидроксилируется при участии цитохрома Р 450-с11 с образованием кортизола.

Скорость синтеза и секреции кортизола стимулируются в ответ на стресс, травму, инфекцию, понижение концентрации глюкозы в крови. Повышение концентрации кортизола подавляет синтез кортиколиберина и АКТГ по механизму отрицательной обратной связи.

Внутриклеточная локализация синтеза кортизола:

  • 1 - аденилатциклазный комплекс;
  • 2 - холестеролэстераза;
  • 3 - протеинкиназа А;
  • 4 - холестеролдесмолаза отщепляет боковую цепь холестерола. ХС - холестерол; ЭХС - эфиры холестерола.