Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Лекарственные препараты из грибов. Грибы — польза и полезные свойства

19.01.2017 Николай Вовк, научный консультант сайт

Для борьбы с возбудителями болезней производители грибов часто используют антибиотики

При выращивании съедобные грибы могут поражаться грибковыми и бактериальными заболеваниями. Для профилактики и борьбы с возбудителями таких болезней производители грибов используют различные методы:

физические , которые предусматривают термическую обработку почвы, поддержание оптимальной влажности в помещении, где культивируются грибы, облучение воздуха короткими длинами волн и т.п.;

биологические , которые позволяют бороться с болезнями за счет вытяжек из растений, содержащих биологически активные вещества (например, дубильные вещества из коры дуба);

химические , где наряду с фунгицидными препаратами (carbendazim, chlorothalonil и т.д.) используют и антибиотики. Они применяются при различных бактериальных заражениях, в частности Pseudomonas tolaasii (развитие бактериальной пятнистости), P. a garici, P. a eruginosa и т.п. В борьбе с микроорганизмами эффективны разные классы антибиотиков: стрептомицин (streptomycin), окситетрациклин (oxytetracycline), касугамицин (kasugamycin) и канамицин (kanamycin).

Хотя использование антибиотиков и не является обязательным в процессе выращивания грибов, многие хозяйства, в частности массового выращивания грибов, предпочитают этот метод, ведь он быстрый, эффективный и легкий в использовании. Потребность в антибиотиках обычно зависит и от вида грибов, которые культивируются, ведь подавляющее большинство грибов имеет собственные противофунгицидные и антибактериальные системы защиты.

Чаще всего антибиотики используют при выращивании шампиньонов, поскольку они особенно уязвимы перед бактериальными заболеваниями, в частности бурой пятнистостью. В то же время вешенка обладает высокой устойчивостью к вирусным, бактериальным и грибковым поражениям, поэтому при ее выращивании можно ограничиться только профилактическими мерами, без антибиотиков.

Влияние антибиотиков на здоровье человека

Учеными установлено, что остатки антибиотиков в пищевых продуктах несут угрозу для человеческого организма. Прежде всего страдает кишечная флора, как следствие – возникают дисбактериоз и другие желудочно-кишечные расстройства.

Постоянное употребление продуктов с остатками антибиотиков может стать причиной аллергий (пенициллин), нефропатии (гентамицин). Окситетрациклин и фуразолидон могут даже действовать на организм человека как канцерогены.

Также не следует забывать, что при длительном использовании антибиотики могут быстро исчерпать свой антибактериальный эффект за счет приобретения резистентности бактериями. Поэтому в критический момент медицина может стать беспомощной даже перед обычным воспалением. Кроме того, ученые предупреждают, что неконтролируемое применение антибиотиков увеличивает риск появления новых штаммов микроорганизмов, устойчивых к известным классам антибиотиков, а следовательно, не подконтрольных для науки и медицины.

Как защитить себя от антибиотиков в грибах?

Чтобы защитить себя от возможных остатков антибиотиков в грибах, следует помнить, что антибиотики разрушаются при высоких температурах. Поэтому специалисты утверждают, что самый простой способ избавиться от антибиотиков в грибах – обдать грибы кипятком несколько раз. Это поможет разрушить и смыть антибиотик с продукта и защитить организм от его негативного влияния.

Минобрнауки Российской Федерации

ФГБОУ ВПО «ЧГУ имени И.Н. Ульянова»

Химико-фармацевтический факультет

Кафедра физической химии и высокомолекулярных соединений


по дисциплине «Химия»

не тему: «Грибные антибиотики»


Введение


Антибиотики - специфические продукты жизнедеятельности некоторых видов грибов, бактерий, лишайников и др., которые задерживают или полностью подавляют рост других видом микроорганизмов. В переводе с греческого означает «против жизни». Следовательно, антибиотики - это вещества, обладающие токсическим действием их продуцентов, которые обладают токсическим свойством по отношению к другим микроорганизмам. Поэтому антибиотики можно считать токсинами бактерий и других микроорганизмов. Понятие антибиотиков не точно так как известны многие антибиотики обладающие токсическим действием на организм человека и животных. Образование антибиотиков является одной из форм проявления антогонизма.

Из числа организмов, образующих антибиотики, грибы занимают одно из первых мест. Большое количество антибиотиков продуцируют такие плесневые грибы, как виды родов Penicillium и Aspergillus. Грибы образуют более 2500 разнообразных антибиотических веществ, отдельные представители которых завоевали всеобщее признание в качестве лечебных средств. Основная же часть грибных антибиотиков не нашла еще практического применения главным образом в силу своей высокой токсичности.

Среди антибиотиков грибного происхождения наибольший интерес по своим свойствам и уникальным возможностиям представляет группа - лактамных антибиотиков. К этой группе из числа грибных препаратов относятся пенициллины, цефалоспорины и другие соединения.

Целью моей работы является изучить особенность - лактамных антибиотиков.

Для достижения поставленной цели были определены следующие задачи:

1.Изучить строение и особенности грибных антибиотиков, в частности лактамных.

Ознакомиться действием на организм - лактамных и других антибиотиков.

Выяснить, какие грибы продуцируют -лактамные антибиотики

Работа выполнена в порядке соискательства используя ресурсы интернета.


1. Особенность и строение


Как отмечает З.Э. Беккер (1988), характерная особенность антибиотиков, образуемых грибами, - отсутствие азота в структурах у большинства из них, а также преобладающий циклический (гетероциклический) тип строения. Однако наиболее ценными антибиотиками, продуцируемыми этими организмами, являются соединения, имеющие в своем составе азот. Бета-лактамные антибиотики (?-лактамные антибиотики, ?-лактамы) - группа антибиотиков, которые объединяет наличие в структуре ?-лактамного кольца.

К бета-лактамам относятся подгруппы пенициллинов, цефалоспоринов, карбапенемов и монобактамов. Сходство химической структуры предопределяет одинаковый механизм действия всех ?-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрёстную аллергию к ним у некоторых пациентов.

С учётом высокой клинической эффективности и низкой токсичности ?-лактамные антибиотики составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций. Возрастающий интерес в ? -лактамным антибиотикам связан не только с их ценными лечебными свойствами, но и с тем, что химическая структура этих соединений обладает высокой реактивностью. А это позволяет на их основе создавать разнообразные полусинтетические биологически активные соединения с ценными антимикробными, свойствами иммуномодуляторов, ингибиторов ферментов, способностью расщеплять ксенобиотики. В основе молекулярного строения бета-лактамов лежит четырехчленное бета-лактамное кольцо, с которым связана их антимикробная активность. Бета-лактамное кольцо расщепляется бета-лактамазами (ферменты, которые вырабатываются микроорганизмами) с образованием неактивной пенициллановой кислоты.

Бета-лактамные антибиотики - группа антибиотиков, которые объединяет наличие в структуре?-лактамного кольца. Сходство химической структуры предопределяет одинаковый механизм действия всех?-лактамов. С учетом высокой клинической эффективности и низкой токсичности они составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций.


Продуценты


Лактамные антибиотики образуются мицелиальными грибами (пенициллины, цефалоспорины, цефемы), стрептомицетами (карбапенемы, клавулановая кислота, цефамицины и др.), некоторыми видами нокардий (монобактамы). Своеобразные лактамные антибиотики вырабатываются некоторыми видами бактерий.

Пенициллин могут вырабатывать многие виды Penicillium (P. chrysogenum, P. brevicompactum, P. nigricans, P. turbatum, P. steckii, P. corylophilurri), а также некоторые виды Aspergillus (A.flavus, A.flavipes, A.janus, A. nidulans и др.). Есть указания, что пенициллин образуется также термофильным организмом Malbranchia pulchella.

Цефалоспорин образуется грибами C. acremonium из рода Cepholosporium.

В последнее время было установлено, что продуценты пенициллина являются лизогенными культурами, т.е. их клетки содержат микофаги. При этом обнаружено, титр фага прямо пропорцаонален антибиотической активности гриба. Мицелий,лишенный фага, синтезировать пенициллин не способен.

По приблизительным подсчетам, из природных источников частичным или полным синтезом получено примерно 10 тыс. соединений, имеющих -лактамное кольцо. Из этого числа соединений около 50 веществ применяется в клинике.

Бета-лактамные антибиотики продуцируются мицелиальными грибами, стрептомицетами, некоторыми видами нокардий.


3. Действие на бактерии и организм


Глобальное действие антибиотиков на бактерии или другие микроорганизмы может выражаться в двух формах: бактерицидный и бактериостатический эффекты. Бактерицидный эффект предполагает разрушение бактерий. В обычных дозах таким эффектом обладают все антибиотики, блокирующие рост клеточной стенки (пенициллины, цефалоспорины). По отношению к грибам таким эффектом обладают антибиотики типа нистатина или леворина (фунгицидный эффект).Бактериостатический эффект предполагает замедление роста и размножения бактерий под действием антибиотиков. Бактериостатическим действием обладают антибиотики, блокирующие синтез белков и нуклеиновых кислот (тетрациклины, макролиды и пр.). Замедление роста и размножения бактерий уже достаточно для победы над многими инфекциями. В больших дозах бактериостатический эффект этих антибиотиков может перерасти в бактерицидный.

Антибиотики, блокирующие синтез белков. К этой группе антибиотиков относятся тетрациклины, макролиды, аминогликозиды, а также левомицетин и линкомицин. Эти антибиотики проникают внутрь клеток бактерий и связываются со структурами, синтезирующими бактериальные белки, и блокируют биохимические процессы, происходящие в клетках бактерий. Парализованная бактерия теряет возможность размножаться и расти, чего бывает достаточно, чтобы победить некоторые инфекции.

Антибиотики, растворяющие клеточную мембрану. Как известно клеточная мембрана некоторых бактерий и грибов состоит из жиров, которые растворяются определенными веществами. Таков механизм действия противогрибковых антибиотиков из группы нистатина, леворина, амфотерицина.

Другие виды антибиотиков действую посредством блокирования синтеза нуклеиновых кислот (РНК, ДНК), либо парализуют определенных биохимические процессы бактерий. Некоторые антибиотики способны разрушать организмы глистов, другие способны победить клетки опухолей. Всегда ли антибиотики разрушают бактерии?

К антибиотикам, разрушающим клеточную стенку относится пенициллин, который оказывает антимикробное действие в отношении некоторых грамположительных бактерий (стафилококки, стрептококки и некоторые другие) и практически неактивен в отношении грамотрицательных бактерий и дрожжей. По характеру действия на микроорганизмы пенициллин - бактериостатический, а в определенных концентрациях - бактерио-цидный антибиотик. Разные типы природных пенициллинов обладают различной степенью биологической активности. Для понимания механизма действия бета-лактамных антибиотиков, следует остановиться на строении клеточной стенки микроорганизмов.

Бактерия, в отличие от клеток млекопитающих, окружена прочной клеточной стенкой. Клеточная стенка микроорганизмов защищает их от внешних воздействий, через нее осуществляется транспорт, на ее поверхности локализуются различные рецепторы для бактериофагов, химических веществ. Клеточная стенка поддерживает гомеостаз и выдерживает высокое осмотическое давление (у грамположительных микроорганизмов осмотическое давление может быть 30 атмосфер). Основной компонент клеточной стенки - пептидогликан (муреин).

У грамположительных микроорганизмов клеточная стенка состоит из 40 слоев пептидогликана, содержание которого составлят до 30-70 % клеточной стенки. У грамотрицательных микроорганизмов клеточная стенка состоит из 1-2 слоев пептидогликана. Пептидогликан составлят до 10% клеточной стенки. У грамотрицательных микроорганизмов имеется дополнительная внешняя мембрана, в состав которой входят: фосфолипидный биослой, белки, липополисахаридный комплекс, аутолизины. Белки, в том числе порины, образующие трансмембранные каналы, вовлечены в транспорт ионов и гидрофильных соединений из внешней среды в периплазму. Аутолизины - фермены, растворяющие пептидогликан. Их активность необходима для процессов роста, они удаляют деградирующие компоненты клеточной стенки, разъединяют дочерние клетки после деления. С внутренней стороны пептидогликан тесно связан с цитоплазматической мембраной, их целостность зависит от наличия ионов Mg и Ca Пептидогликан - полимер, состоящий из повторяющихся дисахаридных групп, в образовании которых участвуют N-ацетилглюкозамин и N-ацетилмурамовая кислота. N-ацетилмурамовая кислота имеет боковой пентапептид. Перекрестное связывание пептидогликана заключается в образовании пептидной связи между терминальным остатком боковой пептидной цепи (обычно D-аланином) с предпоследним остатком примыкающей боковой цепи (L-лизином или диаминопимелиновой кислотой) при участии ферментов транспептидаз. Особенностью пептидогликана Staph.A. является наличие пентаглицинового мостика между двумя пептидными боковыми цепями. Перекрестное связывание пептидогликана обеспечивает прочность клеточной стенки, способной выдерживать очень высокое осмотическое давление внутри клетки микроорганизма. При нарушении структуры пептидогликана происходит осмотический лизис клетки микроорганизма, то есть гибель.

Почти все антибиотики, подавляющие синтез клеточной стенки бактерий, бактерицидны - они вызывают гибель бактерий в результате осмотического лизиса. Бета-лактамы связываются с пенициллин связывающими протеинами (ПСП). ПСП - это трансмембранные или поверхностные белки в цитоплазматической мембране, возможно в местах синтеза клеточной стенки. Они участвуют в построении клеточной стенки. Связываясь с ПСП, антибиотик ингибирует фермент транспептидазу, которая осуществляет конечные этапы синтеза пептидогликана. А именно: не происходит отщепления D-аланина от бокового пентапептида N-ацетилмурамовой кислоты, не образуются поперечные сшивки пептидогликана. Нарушается структура клеточной стенки. Для подавления синтеза пептидогликана требуются концентрации антибиотика в 2-3 раза меньшие, чем для ингибирования роста, как грамположительных, так и грамотрицательных микроорганизмов. Бета-лактамные антибиотики поражают микроорганизмы в фазе роста, ослабляя их клеточные стенки, которые не выдерживают высокое осмотическое давление и разрываются. Возможно также активация протеолитических ферментов в клеточной стенке, что также приводит к гибели микроорганизмов. Таким образом, действие бета-лактамов направлено на повреждение клеточной стенки у растущих микроорганизмов. Повреждение клеточной стенки приводит к гибели, такое действие называется бактерицидным.

Поскольку клетки млекопитающих пептидогликана не содержат, пенициллины на них практически не действуют и потому они, как правило, не токсичны для человека. Именно из-за этого детям разных возрастов пенициллин назначают чаще, чем другие антибиотики. К сожалению, не содержат пептидогликанов и вирусы, грибки, амебы, поэтому пенициллины на них не действуют. Со временем бактерии вырабатывают устойчивость к антибиотикам. Микроорганизмы синтезируют ферменты В-лактамазы, которые расщепляют В-лактамные кольца и лишают антибиотики бактерицидной активности. Каждый новый вариант пеницилина - это попытка фармацевтов «прикрыть» В-лактамное кольцо от действия разрушают ферментов очередным радикалом, но бактерии со временем находят способ обойти преграду. Редкостной устойчивостью ко многим В-лактамазам отличатся оксациллин. В ряде случаев микроорганизмы с приобретением устойчивости к пенициллину теряют вирулентность. Но вирулентность восстанавливается после нескольких пассажей через животных и при этом резистентность к антибиотику сохраняется. -лактамные антибиотики вызывают гибель бактерий, стенки которого образуют пептидогликановый каркас, в результате осмотического лизиса. Пенициллин обладает мощным бактерицидным действием в отношении ряда клинически значимых возбудителей (стрептококки, менингококки и др), но имеет приобретеннаую резистентность стафилококков, пневмококков, гонококков, бактероидов. Микроорганизмы синтезируют ферменты В-лактамазы, которые расщепляют В-лактамные кольца и лишают антибиотики бактерицидной активности. Биосинтетические пенициллины - это антибиотики узкого спектра, разрушаются бета-лактамазами, и в кислой среде.


Заключение

пенициллин антибиотик бактерия клеточный

1.Бета-лактамные антибиотики - группа антибиотиков, которые объединяет наличие в структуре ?-лактамного кольца. Сходство химической структуры предопределяет одинаковый механизм действия всех ?-лактамов. С учетом высокой клинической эффективности и низкой токсичности они составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций.

.Бета-лактамные антибиотики продуцируются мицелиальными грибами, стрептомицетами, некоторыми видами нокардий.

.Учеными были открыты антибиотики природного происхождения (биосинтетические пенициллины). Они обладали избирательностью действия, высокой противомикробной активностью, но биосинтетические пенициллины разрушались в кислой среде желудка, разрушались микробными бета-лактамазами, не действовали на группу грамотрицательных микроорганизмов. В дальнейшем были синтезированы новые группы антибиотиков, создание которых решило проблемы резистентности некоторых устойчивых штаммов стафилококков вводятся парэнтерально - в/мышечно.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Топ-10 самых полезных грибов от журнала «сайт»

Польза грибов для человеческого организма несомненна. Исстари народные знахари лечили лесными дарами разные хвори: экстракт белого гриба использовали при обморожениях, настоем из лисичек боролись с фурункулами, сморчками успокаивали нервы, с помощью маслят избавлялись от головных болей.

Основные полезные свойства грибов

  1. Грибы – это прекрасный источник белка. Некоторые разновидности по своей питательности не уступают говядине. Всего 150 г сушеных грибов способны обеспечить организм суточной потребностью в мясе;
  2. Грибы – это низкокалорийный продукт, что на 90% состоит из воды, практически не содержит крахмала, натрия и холестерина, помогает организму избавиться от лишней жидкости (благодаря наличию калия), налаживает обмен веществ, а все это способствует похудению;
  3. Чудодейственные шляпки играют важную роль в укреплении иммунитета. При регулярном употреблении грибы предупреждают онкологические и сердечно-сосудистые заболевания. Антиоксидант селен, источником которого они являются, встречается только в некоторых овощах и фруктах;
  4. Благодаря обилию цинка и витаминов группы В грибы полезны для нервной системы, они предупреждают эмоциональные расстройства, помогают избежать умственного истощения;
  5. Наличие витамина D делает грибы полезными для здоровья кожи, костей, зубов, ногтей и волос.

Наиболее ценными по своим питательным и целебным качествам считаются белые грибы, подберезовики, подосиновики, волнушки, маслята, грузди, лисички, опята, рыжики и даже вездесущие сыроежки.

ТОП-10 самых полезных грибов

1. Белые грибы (боровики)
Белые грибы – ценный источник белков, ферментов и пищевых волокон. Сера и полисахариды в их составе способны оказать существенную поддержку в борьбе с онкологическими заболеваниями, лецитин и алкалоид герцедин очень важны для здоровья сердечно-сосудистой системы, рибофлавин отвечает за рост волос, ногтей, обновление кожи, правильную работу щитовидной железы и здоровье организма в целом. Из всех грибов именно в боровиках обнаружен наиболее полный набор аминокислот, в том числе и незаменимых. Богат и витаминно-минеральный состав этих благородных грибов. В них содержится калий, магний, фосфор, железо, кальций, марганец, цинк, токоферол, ниацин, тиамин, фолиевая и аскорбиновая кислота. Боровики обладают ранозаживляющими, иммуномодулирующими и противоопухолевыми свойствами.

2. Подосиновики (красные грибы)
По своим питательным и вкусовым качествам подосиновики практически не уступают боровикам. В этих грибах много калия, фосфора, железа, витаминов А и С, есть клетчатка, лецитин, ферменты и жирные кислоты. По содержанию никотиновой кислоты они не уступают печени, а по концентрации витаминов группы В близки к зерновым культурам. Белков в подосиновиках больше, чем в мясе. Ценные аминокислоты, источником которых они являются, особенно важны для людей, чей организм ослаблен перенесенными операциями, инфекционными заболеваниями, разного рода воспалительными процессами. Сухой порошок из красных грибов принимают для очищения крови и снижения уровня холестерина.


Эти грибы на Руси собирали с древнейших времен. Если боровику гурманы присвоили титул «царя грибов», то рыжика величают «великим князем». И крестьяне, и цари ценили эти грибы за оригинальный вкус и чудесный аромат. Многогранны и его полезные свойства. По усвояемости организмом человека рыжики относятся к наиболее ценным грибам. Они богаты каротиноидами, ценными аминокислотами, железом, содержат клетчатку, витамины группы В (рибофлавин, тиамин и ниацин), аскорбиновую кислоту и ценный антибиотик лакториовиолин, что губительно действует на рост множества бактерий. Пользу рыжиков для здоровья объясняет также изобилие в них минеральных солей – калия, натрия, фосфора, магния, кальция. Рыжиками лечат заболевания, вызванные нарушением обмена веществ, ревматизм, витилиго, болезни легких.


На Руси грузди считались самыми лучшими грибами на протяжении столетий. Ценность этих лесных даров в том, что они являются одним из немногих источников витамина D не животного происхождения. Моченые грузди народная медицина признала одним из лучших средств для профилактики мочекаменной болезни: биоактивные вещества, что содержатся в этих грибах, препятствуют образованию в почках аксалатов и уратов. Грузди являются источником витаминов С, РР и группы В, обеспечивают организм полезными бактериями, содержат натуральные антибиотики, что укрепляют слизистые оболочки органов дыхания и подавляют размножение туберкулезной палочки. Препараты из груздей используют для лечения желчнокаменной болезни, почечной недостаточности, эмфиземы легких и заболеваний желудка.


Эти скромные грибы с желтыми, серыми, зелеными, розово-красными, фиолетовыми и коричневыми шляпками любят за приятный вкус и многогранные полезные свойства. В сыроежках в изобилии содержатся жирные кислоты, пищевые волокна, всевозможные моно- и дисахариды, витамины РР, С, Е, В1 и В2, из минералов в них больше всего магния, кальция, фосфора и железа. Большое значение для здоровья в составе этих грибов имеет вещество лецитин, что чистит сосуды, препятствует накоплению холестерина в организме, помогает при нарушениях обмена веществ. Некоторые виды сыроежек обладают антибактериальным действием, способствуют очищению желудка и кишечника. Найденный в сыроежках фермент руссулин очень востребован в сыроделии: на створаживание 200 л молока требуется всего 1 г этого вещества.


Любители грибных блюд знают, что замечательный вкус – не единственное достоинство подберезовиков, велика и польза этих грибов для здоровья. Особенно ценятся подберезовики за содержание прекрасно сбалансированного белка, включающего аргинин, тирозин, лейцин и глутамин. Богат и витаминный состав этих грибов, он включает аскорбиновую и никотиновую кислоту, токоферол, витамины группы В и витамин D. Способность подберезовиков выводить из организма токсины обеспечивается наличием пищевых волокон, а ценность этого продукта для здоровья опорно-двигательного аппарата обусловлена содержанием большого количества фосфорной кислоты, участвующей в строительстве ферментов. Подберезовики используют для регулирования сахара в крови, лечения почечных патологий и разладов в работе нервной системы.


Опенки богаты витаминами С и В1, в разных видах этих грибов присутствуют природные антибиотики, противораковые вещества, токоферол и никотиновая кислота, калий, натрий, магний и железо. Осенние опята применяются как слабительное средство, а луговые опенки положительно влияют на работу щитовидной железы и губительно действуют на кишечную палочку и золотистый стафилококк. Опята особенно полезны для людей, у которых есть проблемы с кроветворением, для болеющих ишемической болезнью сердца и сахарным диабетом. 100 г этих грибов способны восполнить суточную потребность организма в меде и цинке. По содержанию фосфора и кальция опенки близки к рыбе, а белок, который в них содержится, обладает противоопухолевой активностью.


По своему полезному составу вешенки близки к мясу: в этих грибах содержатся витамины группы B, аскорбиновая кислота, токоферол, а также довольно редкий витамин D2, участвующий во всасывании кальция и фосфора в кишечнике, а содержанию никотиновой кислоты (особенно важного витамина для кормящих матерей) вешенка считается самым ценным грибом. На 8% вешенки состоят из минеральных веществ, всего 100 г продукта способны восполнить суточную потребность организма в калии. Эти грибы обладают бактерицидными свойствами, помогают вывести радиоактивные вещества из организма, укрепляют сосуды, регулируют давление, снижают содержание плохого холестерина в крови. А недавно ученые обнаружили еще одно любопытное свойство этих грибов – способность повышать мужскую потенцию.


Любители грибов знают, что нежный ореховый вкус – не единственное достоинство блюд из лисичек. Польза этих грибов проявляется в иммуностимулирующем и противоопухолевом действии, благотворном влиянии на состояние слизистых оболочек, улучшении зрения, способности выводить из организма радионуклиды и восстанавливать поврежденные клетки поджелудочной железы. Лисички богаты медью, цинком, витаминами D, А, РР и группы В, являются источником ценных аминокислот, а по содержанию бета-каротина превосходят морковь. Природные антибиотики, найденные в этих грибах, губительны для стафилококков и туберкулезной палочки. Вытяжками из лисичек лечат заболевания печени. Если эти грибы правильно приготовить, они способны помочь в лечении ожирения (спровоцированного неправильной работой печени).


Эти замечательные грибы являются источником лецитина, органических кислот, минеральных веществ и ценных белков. Из витаминов в шампиньонах присутствуют токоферол, витамин D, никотиновая и фолиевая кислота. По содержанию фосфора шампиньоны могут соперничать с рыбой, а витаминов группы B в этих грибах больше, чем в свежих овощах. Полезные вещества, что содержатся в шампиньонах, помогают бороться с усталостью, регулируют мыслительную деятельность, поддерживают в хорошем состоянии кожу, активизируют иммунитет, благотворно влияют на нервные клетки, систему кровообращения и состояние слизистых оболочек. Шампиньоны обладают противоопухолевой и антибактериальной активностью, помогают организму расстаться со шлаками, излишками холестерина и тяжелыми металлами.

Калорийность грибов

Все грибы относятся к безопасным для фигуры продуктам. Самую низкую калорийность имеют сыроежки – 15 ккал на 100 г. В рыжиках содержится 17 ккал на 100 г, в лисичках и груздях – 19 ккал, в подберезовиках – 20 ккал, в опятах и подосиновиках – 22 ккал, в шампиньонах – 27 ккал, в белых грибах – 30 ккал, в вешенках – 38 ккал на 100 г.

Вред грибов

Поскольку грибы являются трудно перевариваемым продуктом, налегать на них не стоит при острых воспалительных процессах пищеварительной системы (панкреатитах, язвах, гастритах, проблемах с печенью). Маринованных и соленых грибов не рекомендуется съедать более 100 г в день. Любыми грибами не рекомендуется кормить детей, у малышей отсутствуют ферменты, необходимые для их расщепления. Крайне не рекомендуется собирать старые грибы. Не принесут пользу и дары леса, собранные в промышленных районах, вблизи оживленных автострад, военных полигонов, химических производств.


За чудесные гастрономические качества, обилие витаминов, многогранные полезные свойства грибы любят в разных странах, готовят из них разнообразные блюда, делают лекарственные препараты. Лесные дары таят в себе еще много загадок. Одно не вызывает сомнений – это польза грибов для здоровья. Главное, в них разбираться, собирать в экологически чистых районах или покупать в проверенных местах.

Антибиотики группы пенициллина (природные и полусинтетические) наименее токсичны и обладают высоким эффектом действия. Пенициллин был выделен впервые в 1928 г. Флеммингом из зеленой плесени Penicillium notatum. Для клинического применения он был получен только в 1940 г. группой оксфордских ученых Флори, Чейном и Эбрахамом, а в 1942 г. — в Советском Союзе 3. В. Ермольевой. В настоящее время пенициллин получают из культур Penicillium chrysogenum в процессе их роста.

Природные антибиотики представляют собой смесь различных пенициллинов (G, F, К, X), эффективность которых недостаточна. В промышленности препараты пенициллина получают с помощью направленного биосинтеза (биосинтетические пенициллины), добавляя в питательную среду, где культивируются пенициллиумы, различные вещества, используемые ими для синтеза антибиотиков. Наиболее активны из них бензилпенициллин (G) и феноксиметилпенициллин (V).

Препараты пенициллина высокоактивны в отношении грамположительных (стафило-, стрепто- и пневмококки) и грамотрицательных (гонококки и менингококки) кокков. Действуют они также на бациллы сибирской язвы, клостридии и спирохеты. Особенно чувствительны к пенициллину возбудители сифилиса — бледные трепонемы. Пенициллин не оказывает действия на грамотрицательные бактерии семейства кишечных, микобактерии туберкулеза, риккетсии, вирусы, простейшие и грибы.

Бензилпенициллии используют для парентерального введения в виде натриевой, калиевой или новокаиновой соли (новоциллин). Последний оказывает пролонгированное, т. е. продленное, действие: лечебная концентрация препарата в крови сохраняется 12 ч. Действие в течение 1—2 нед обеспечивает бензатинпенициллин (бициллин-1) и комбинированные препараты, состоящие из различных солей пенициллина (бициллин-3, бициллин-5). Эти препараты особенно эффективны при лечении сифилиса, ревматизма, осложнений после удаления миндалин.

Феноксиметилпенициллин применяют внутрь, так как он устойчив к кислой среде желудка. Его используют в виде таблеток и гранул, из которых готовят суспензию.

Механизм действия пенициллина в настоящее время хорошо изучен. Он тормозит последнюю стадию синтеза гликопептидов, составляющих основу клеточной стенки бактерий. Растущая клетка бактерий перестает синтезировать клеточную стенку и погибает. К пенициллину более чувствительны бактерии размножающиеся, чем находящиеся в покое. Пенициллин практически не токсичен для человека и животных, так как оболочки их клеток не содержат гликопептидов. Многие микроорганизмы, особенно стафилококки, приобретают устойчивость к пенициллину. Это связано с наличием у них фермента пенициллиназы, разрушающей пенициллин. Устойчивость грамотрицательных кишечных бактерий к пенициллину также является следствием наличия у них пенициллиназы.

Хотя пенициллины малотоксичны, иногда они могут вызывать побочные реакции, связанные с повышенной чувствительностью больного к препарату. Эти реакции называются аллергическими. Они проявляются в виде сыпи-крапивницы, отеков век, губ, носа. У больных, повторно леченных пенициллином, может возникнуть анафилактический шок, который нередко заканчивается смертью. Однако он возникает крайне редко: 1 случай на миллион больных.

При использовании больших, «ударных», доз пенициллина для лечения сифилиса или возвратного тифа могут наступить падение артериального давления, учащение сердцебиения и обморочное состояние. Подобная реакция развивается как следствие быстрого освобождения большого количества бактериальных токсинов при гибели возбудителей заболевания и токсичности этих продуктов для организма.

Полусинтетические пенициллины — ампициллин, оксадиллин, метициллин, клоксациллин и карбенициллин — получают путем химического синтеза на основе 6-аминопенициллановой кислоты (6-АПК), составляющей как бы ядро пенициллина.

Ампициллин активен в отношении не только грамположительных, но и грамотрицательных микроорганизмов. Поэтому его наиболее широко применяют в клинике для лечения инфекционных заболеваний легких, мочеполовых и желчных путей, вызванных стрептококками, пневмококками, кишечной палочкой и протеем. Ампициллин назначают в таблетках и капсулах. Внутримышечно и внутривенно его можно вводить в виде натриевой соли. Применение ампициллина иногда сопровождается тошнотой, рвотой. Оказывая губительное действие на кишечную микрофлору, он может вызывать явления дисбактериоза, сопровождающиеся поносом. Ампициллин, как и природные пенициллины, чувствителен к пенициллиназе и разрушается ею. Поэтому он оказывается неэффективным в отношении пенициллиназообразующих стафилококков.

Карбенициллин по спектру антимикробного действия близок к ампициллину, но в отличие от других пенициллинов активен в отношении синегнойной палочки. Карбенициллин вводят парентерально, а при гнойных менингитах — ив спинномозговой канал. Препарат малотоксичен, но может вызвать аллергические реакции. Существует также комбинированный препарат ампициллина с оксациллином — ампиокс, который обычно назначают при тяжелом течении заболевания, если неизвестен возбудитель.

Метициллин, оксациллин и клоксацйллин в отличие от ампициллина не разрушаются пенициллиназой и поэтому высоко эффективны при инфекциях, которые вызываются микробами, устойчивыми к пенициллину, особенно стафилококками. Оксациллин, кроме того, устойчив в кислой среде и его применяют внутрь. Эти препараты действуют на грамположигельную флору.

Антибиотики широкого спектра действия эффективны в отношении микроорганизмов, принадлежащих к различным группам. К таким антибиотикам относят левомицетин, тетрациклины, аминогликозиды, полусинтетические пенициллины и полусинтетические цефалоспорины.

Левомицетин (хлорамфеникол) выделен в 1947 г. из культуральной жидкости Streptomyces venezuelae. В настоящее время его получают с помощью химического синтеза. Левомицетин действует на грамположительные и грамотрицательные бактерии, риккетсии, некоторые крупные вирусы, например трахомы и орнитоза. К нему чувствительно большинство микробов, устойчивых к пенициллину, стрептомицину и сульфаниламидам. Левомицетин применяют при лечении брюшного тифа и паратифов, дизентерии, бруцеллеза, туляремии, коклюша, пневмонии, гонореи, сыпного тифа, трахомы, орнитоза и других инфекций. Левомицетин не действует на анаэробы, простейшие и микобактерии туберкулеза.

Механизм действия связан с торможением процесса синтеза белка в клетке. Он нарушает равновесие в системе образования РНК- Левомицетин малотоксичен. Назначается в порошках и таблетках внутрь. В больших дозах при длительном применении может оказывать влияние на кроветворную систему.

Синтомицин, действующим началом которого является левомицетин, вследствие его токсичности применяется в настоящее время только в виде линиментов и эмульсий для лечения гнойных заболеваний кожи и слизистых оболочек, при ожогах и трахоме.

Тетрациклины объединяют группу антибиотиков, близких по химическому составу и биологическим свойствам. Первым был в 1945 г. выделен хлортетрациклин (ауреомицин, биомицин) из разнокультурной жидкости лучистого гриба Streptomyces aureofaciensа в 1949 г. — окситетрациклин (террамицин) из Str. rimosus, и в 1952 г. химическим путем получен тетрациклин. Teтpaциклины активны в отношении крупных вирусов и риккетсий, спирохет и простейших, грамположительных и грамотрицательных бактерий. Их используют при лечении пневмонии, дизентерии, бруцеллеза, туляремии, коклюша, гонореи, трахомы, сыпного тифа, амебной дизентерии. Лечебные дозы препаратов действуют бактериостатически, а более высокие — бактерицидно.

Тетрациклины оказывают действие на синтез белка в клетке и функции рибосом. В больших дозах нарушают синтез гликопептидов клеточной стенки и проницаемость клеточных мембран. Тетрациклины исключают также из обмена веществ клетки металлы, необходимые для функционирования ферментов.

Часто микроорганизмы приобретают устойчивость к тетрациклинам, которая бывает одновременно связана с устойчивостью к стрептомицину, левомицетину и сульфаниламидам. Такая приобретенная устойчивость может быть обусловлена наличием небольшой автономной хромосомы, лежащей в цитоплазме бактерий (R-фактор), которая может передаваться из одной микробной клетки в другую.

Лекарственные формы применения тетрациклинов различны: таблетки, капсулы и суспензии, глазная мазь и свечи. Производные тетрациклина: гликоциклин предназначен для внутривенного и внутримышечного введения, а морфоциклин — только для внутривенного. При попадании под кожу он вызывает раздражение и образование инфильтрата. Существуют комбинированные формы тетрациклина с олеандомицином (олететрин), которые применяют в виде таблеток, и смесь олеандомицина с морфоциклином (олеморфоциклин), вводимая внутривенно.

Окситетрациклин применяется внутрь в виде таблеток, в мазях, местно в присыпках и растворах. Окситетрациклин можно вводить внутримышечно. Полусинтетическое производное его — метациклин — принимают внутрь, так как он быстро всасывается и длительно сохраняется в крови. Хлортетрациклин для приема внутрь выпускается в виде таблеток и капсул. Побочное действие тетрациклинов связано с их губительным влиянием на микрофлору кишечника и особенно кишечную палочку. Гибель микроорганизмов, нормальных обитателей слизистых оболочек, приводит к размножению устойчивых к тетрациклинам дрожжеподобных грибов Candida, стафилококков и протея. В результате возникают дисбактериоз и такие тяжелые заболевания, как кандидамикозы, стафилококковые энтериты и гиповитаминозы. Эти осложнения можно предупредить при рациональном применении антибиотиков и одновременном употреблении противогрибкового препарата нистатина и витаминов. Поэтому выпускают препараты, являющиеся комбинациями тетрациклинов и витаминов: витациклин, витоксициклин и др.

Аминогликозиды объединяют группу родственных препаратов, полученных из культуральной жидкости лучистых грибов — стрептомицет. К ним относят, помимо стрептомицина, неомицин, канамицин, мономицин (паромомицин) и гентамицин.

Стрептомицины — антибиотики, которые образуют лучистые грибы из рода стрептомицет. Стрептомицин был выделен в конце 1943 г, Ваксманом. В 1946 г. из стрептомицина химическим путем получен дигидрострептомицин. Стрептомицин обладает широким спектром антибактериального действия и оказывает бактериостатическое и бактерицидное влияние на возбудителей чумы, туберкулеза, бруцеллеза, на шигелл и сальмонелл. В настоящее время его применяют преимущественно при лечении туберкулеза.

Механизм действия стрептомицина связан с нарушением синтеза белка в клетке, так как он образует комплексы с ДНК и РНК клетки, препятствуя считыванию генетического кода. Стрептомицин нарушает также проницаемость клеточных мембран.

Применение стрептомицина ограничено вследствие токсического действия на VIII пару черепных (слуховых) нервов. Это обусловливает нарушения функций слухового и вестибулярного аппарата: снижение и потерю слуха, пошатывание при ходьбе.

При использовании стрептомицина микроорганизмы быстро приобретают устойчивость к нему. Некоторые микробы образуют даже стрептомицинзависимые формы, которые могут размножаться на питательных средах только при добавлении стрептомицина. Образованию устойчивых форм микобактерий туберкулеза препятствует назначение стрептомицина в сочетании с парааминосалициловой кислотой (ПАСК) и фтивазидом. Возможность практического применения аминогликозидов ограничена нейротоксическим и нефротоксическим действием препаратов.

Канамицин наименее токсичен и вводится парентерально при лечении туберкулеза. Гентамицин широко используют при лечении заболеваний мочевыводящих путей и дыхательного тракта, вызванных грамотрицательными бактериями (кишечная палочка, протей), а также синегнойной палочкой. Парентеральное введение неомицин а запрещено.

В случае приема внутрь аминогликозиды почти не всасываются и оказывают местное действие на микрофлору кишечника, поэтому их используют при заболеваниях желудочно-кишечного тракта, вызванных сальмонеллами, шигеллами, стафилококками, дизентерийной амебой (паромомицин, мономицин).

Полусинтетические цефалоспорины получены химическим путем на основе 7-аминоцефалоспорановой кислоты (7-АЦК). Они обладают широким спектром действия в отношении как грамположительных, так и грамотрицательных бактерий: кокков, сибиреязвенных бацилл, клострвдий, коринебактерий, шигелл, сальмонелл, кишечной палочки. Эти антибиотики не действуют на синегнойную палочку, большинство штаммов протея, а также риккетсии, вирусы и простейшие. Цефалоспорины не разрушаются стафилококковой пенициллиназой и высокоактивны в отношении устойчивых к пенициллинам стафилококков. Наибольшее применение имеют цефалоридин (депорин) и цефалотин, которые вводятся в основном внутримышечно при инфекциях дыхательных и мочевыводящих путей, раневых инфекциях и инфицированных ожогах. Полусинтетические цефалоспорины малотоксичны и используются как антибиотики резерва.

Антибиотики резерва применяют при лечении заболеваний, вызываемых устойчивыми к пенициллину грамположительными микробами, чаще стафилококками. К ним относят эритромицин, олеандомицин, выпускаемые за рубежом спирамицин и карбомицин, новобиоцин (альбомицин), ванкомицин и линкомицин. Для лечения туберкулеза используют также антибиотики резерва: флоримицин (БИОМИЦИН), циклосерин, канамицин, рифамицин и др.

Противогрибковые антибиотики — нистатин (микостатин), леворин, трихомицин, амфотерицин В и микогептин — получены из культуральной жидкости различных видов стрептомицет. Гризеофульвин выделен из зеленой плесени Penicillium griseofulvum.

Нистатин используют в таблетках, в виде мазей, свечей и глобулей для лечения кандидамикозов слизистых оболочек полости рта, влагалища, желудочно-кишечного тракта, мочеполовых органов и кожи. Механизм действия нистатина связан с нарушением проницаемости клеточных мембран патогенных грибов. Профилактическое применение нистатина рекомендуется при длительном приеме антибиотиков широкого спектра действия, особенно тетрациклинов, маленькими детьми, лицами пожилого возраста и ослабленными. В случаях применения больших доз нистатина иногда могут возникать тошнота, рвота и расстройство функции кишечника.

Леворин назначают при кандидамикозах, аспергиллезе легких, а также при трихомониазе половых органов. Трихомицин обладает высокой активностью в отношении дрожжеподобных грибов Candida, а также трихомонад, некоторых трипаносом, лейшманий и спирохет, подавляет рост анаэробов — клостридий и стафилококков. Амфотерицин В — единственный препарат, эффективный при генерализованных микозах, таких, как гистоплазмоз, бластомикоз, криптококкоз и кандидасепсис. Препарат токсичен, и его применяют только по жизненным показаниям. Микогептин назначают внутрь при глубоких системных микозах: кокцидиоидозе, гистоплазмозе, аспергиллезе, кандидозе и др.

Гризеофульвин используют при дерматомикозах человека: парше (фавус) волосистой части головы и гладкой кожи, трихофитии волос и кожи, микроспории, эпидермофитии, а также при фавусе и трихофитии лимфатических узлов и костей. При других грибковых заболеваниях он неэффективен.

Противоопухолевые антибиотики оказывают выраженное цитотоксическое действие на опухолевые и быстрорастущие нормальные клетки организма, а также дают выраженный антимикробный эффект в отношении различных групп микроорганизмов. Как антибактериальные препараты они не применяются ввиду высокой токсичности. Большинство противоопухолевых антибиотиков образуется при биосинтезе различными видами стрептомицет. Механизм действия этих антибиотиков основан на влиянии их на синтез или метаболизм нуклеиновых кислот. Например, при действии брунеомицина наблюдаются прекращение синтеза и интенсивный распад ДНК, оливомицин подавляет синтез РНК на матрице ДНК, актиномицин и рубомицин подавляют ДНК-зависимый синтез РНК.

К противоопухолевым относятся антибиотики группы актиномицинов (дактиномицин, хризомаллин, аурантин), группы ауреолевой кислоты (оливомицин, хромомицин), антрациклины (дауномицин, рубомицин) и стрептонигрины (брунеомицин), близкие по структуре к митомицину С.

Противоопухолевые антибиотики применяют при различных формах злокачественных новообразований.

Антибиотики от Природы!

Возникновение антибиотиков в виде лекарственных препаратов, безусловно, намного облегчило человечеству существование и помогло бороться с различными недугами. Однако наряду с пользой они приносят и множественные побочные действия, которые крайне отрицательно отражаются на состоянии человека. Благо,есть еще и природные антибиотики, способные естественным образом восстанавливать здоровье людей .

Польза природных антибиотиков

Времена, когда мы хватались за антибиотики по первому же сигналу «чуть что», постепенно сходит на нет, потому что пользоваться таблетками и каплями не настолько безопасно, как хотелось бы. Выход из ситуации один – попробовать естественное и постепенное оздоровление натуральными биостимуляторами, которые прекрасно избавляют организм от вредной микросреды, не нарушая других происходящих в нем процессов.

Природные антибиотики не только вылечивают заболевания, но и укрепляют иммунную систему, поддерживают функциональность органов в хорошем рабочем состоянии и не разрушают естественный баланс систем. Они противостоят исключительно болезнетворным вирусам, не причиняя вреда полезной микрофлоре.

Кроме того,природные антибиотики – это недорогие, доступные и высокоэффективные биостимуляторы. К ним относятся чеснок, лук, редька, хрен, калина, рябина, брусника, лимон, орегано, петрушка, капуста, клюква и многие другие растения, а также некоторые продукты органического происхождения – такие как мед и прополис.

Природные антибиотики-растения

Лук и чеснок

Они содержат в себе большое количество фитонцидов, которые имеют повышенную противомикробную и противобактерицидную активность (они обладают воздействием на все разновидности болезнетворных микроорганизмов). По степени лечебного влияния с ними не может сравниться ни один фармакологический антибиотик.Эти природные антибиотики используются при болезнях верхних дыхательных путей, хронических и острых формах заболеваний бронхов и легких. Попадая внутрь, фитонциды очищают систему дыхания от бацилл, вызывающих критические состояния дыхательных органов. Для получения наибольшего эффекта лук и чеснок применяют в свежем виде: например, у чеснока, который 4 месяца хранился в холодильной камере, сила антимикробного воздействия уменьшается в 2 раза по сравнению со свежесобранным. Оптимальны в этом случае кашицы, которые в течение первых 15 минут выделяют фитонциды наиболее активно.

Калина

Это еще один мощнейший природный антибиотик. Она прекрасно противостоит простудным вирусам, бактериям и грибковым микроорганизмам (плесени). Для лечения пригодно все – ягоды калины, кора, листья. Поэтому из нее можно не только варить варенье или делать чай, но и вязать банные веники. Распарившись, они начинают активно проявлять противовоспалительные и дезинфицирующие возможности. Кора и листья этого дерева хороши при нагноениях и гнойничковых инфекциях. Калина – идеальное профилактическое средство и при массовом проявлении простудных заболеваний, в частности, гриппа. Для этого ее можно употреблять в самых разных видах – подмешивать в чай, пить в виде сока, есть как вкусное и в то же время полезное варенье. Лучше использовать калину в период заболевания, а не каждый день. Противомикробное воздействие этого растения настолько велико, что при неимении кипяченой воды можно просто бросить горсть ягод в любой сосуд и спустя пару часов употреблять чистую воду без вреда для организма.

Орегано

Еще издревле считалось, что это средство от 99 заболеваний. В него входит подавляющая часть микроэлементов, а по составу он приближен к плазме человеческой крови. Присутствуют в меде и фитонциды, наделяющие его бактерицидным воздействием на организм, а также флавоноиды – наиболее мощные природные защитные механизмы, придающие меду не только запах, но и лечебные свойства.Являясь природным антибиотиком, антисептиком, это вещество действует на микроорганизмы избирательно, сохраняя полезные и нейтрализуя вредоносные. Мед применяют в чистом виде, нанося на раны для избежания процесса воспаления и нагноения.

Прополис

Он представляет собой продукт жизнедеятельности пчел. Применяется в самых разных видах – как раствор, капли, полоскание для горла и настойка. Является природным антибиотиком, который широко используется при простудных инфекциях. Эффективен в строго ограниченном курсе и не предназначен для каждодневного лечения: стандартный курс приема внутрь – 10 дней. Помогает при профилактике в период сезонной активности вируса гриппа. Избавляет и от наружных инфекционно-воспалительных процессов.

Рецепты на основе природных антибиотиков

На основе чеснока и лука при насморке готовят следующее средство: заливают их кипятком, предварительно мелко порубив, и дают постоять, затем разводят до оптимального состояния обычной водой – чтобы не жег слизистую носа. В полученную консистенцию добавляют растительное масло и сок каланхоэ или алое. Закапываю в нос как обычные капли, используя пипетку.

При воспалении дыхательных путей применяют другое средство на основе чеснока. Для его получения добавляют восемь капель чесночного сока в одну ложку молока (столовую) и дают это средство больному 3-4 раза в день. Используемое молоко должно быть предварительно прогрето до 45 градусов (то есть быть теплым).

Для борьбы с простудной инфекцией крайне эффективен чай из орегано (душицы): 250 мл кипятка заливают сушеную душицу (1 чайн. ложку с верхом), дают настояться примерно 15 минут и процеживают через ситечко или марлю. Пьют как обычный чай, подсластив медом. Такой препарат способствует избавлению от сильного кашля и бронхиальных катаров.