Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Оптическая плотность среды определяется. Оптическая плотность назначение

Колориметрия

Из оптических методов анализа в практике аналитических лабораторий наиболее широко применяются колориметрические методы (от лат. color - цвет и греч. μετρεω - измеряю). Колориметрические методы основаны на измерении интенсивности светового потока, прошедшего через окрашенный раствор.

В колориметрическом методе используются химические реакции, сопровождающиеся изменением цвета анализируемого раствора. Измеряя светопоглощение такого окрашенного раствора или сравнивая полученную окраску с окраской раствора известной концентрации, определяют содержание окрашенного вещества в испытуемом растворе.

Существует зависимость между интенсивностью окраски раствора и содержанием в этом растворе окрашенного вещества. Эта зависимость, называемая основным законом светопоглощения (или законом Бугера-Ламберта-Бера), выражается уравнением:

I = I 0 10 - ε c l

где I - интенсивность света, прошедшего через раствор; I 0 - интенсивность падающего на раствор света; ε- коэффициент светопоглощения, постоянная величина для каждого окрашенного вещества, зависящая от его природы; С - молярная концентрация окрашенного вещества в растворе; l - толщина слоя светопоглощающего раствора, см.

Физический смысл этого закона можно выразить следующим образом. Растворы одного и того же окрашенного вещества при одинаковой концентрации этого вещества и толщине слоя раствора поглощают равное количество световой энергии, т. е. светопоглощение таких растворов одинаковое.

Для окрашенного раствора, заключенного в стеклянную кювету с параллельными стенками, можно сказать, что по мере увеличения концентрации и толщины слоя раствора его окраска увеличивается, а интенсивность света I, прошедшего через поглощающий раствор, уменьшается по сравнению с интенсивностью падающего света I 0 .



Рис.1 Прохождение света через кювету с исследуемым раствором.

Оптическая плотность раствора.

Если прологарифмировать уравнение основного закона светопоглощения и изменить знаки на обратные, то уравнение принимает вид:

Величина является очень важной характеристикой окрашенного раствора; ее называют оптической плотностью раствора и обозначают буквой A:

A = ε C l

Из этого уравнения вытекает, что оптическая плотность раствора прямо пропорциональна концентрации окрашенного вещества и толщине слоя раствора.

Другими словами, при одинаковой толщине слоя раствора данного вещества оптическая плотность этого раствора будет тем больше, чем больше в нем содержится окрашенного вещества. Или, наоборот, при одной и той же концентрации данного окрашенного вещества оптическая плотность раствора зависит только от толщины его слоя. Отсюда может быть сделан следующий вывод: если два раствора одного и того же окрашенного вещества имеют различную концентрацию, одинаковая интенсивность окраски этих растворов будет достигнута при толщинах их слоев, обратно пропорциональных концентрациям растворов. Этот вывод очень важен, так как на нем основаны некоторые методы колориметрического анализа.



Таким образом, чтобы определить концентрацию (С) окрашенного раствора, необходимо измерить его оптическую плотность (A). Чтобы измерить оптическую плотность, следует измерить интенсивность светового потока.

Интенсивность окраски растворов можно измерять различными методами. Различают субъективные (или визуальные) методы колориметрии и объективные (или фотоколориметрические).

Визуальными называются такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом.

При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, откуда и метод получил название фотоколориметрического.

Визуальные методы

К визуальным методам относятся:

1) метод стандартных серий;

2) метод дублирования (колориметрическое титрование);

3) метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине поглощающего слоя).

Растворы в колориметрии обычно имеют интенсивную окраску, поэтому имеется возможность определять весьма небольшие концентрации или количества веществ. Однако это может сопровождаться определенными трудностями: так навески для приготовления серии стандартных растворов могут быть очень малы. Для преодоления этих трудностей готовят стандартный раствор А достаточно высокой концентрации, например 1 мг/мл. После этого путем разбавления из раствора А готовят стандартный раствор В значительно меньшей концентрации, а из него в свою очередь готовят серию стандартных растворов.

Для этого в пробирки или кюветы одинакового размера и одинакового цвета стекла пипеткой добавляются необходимые объемы растворов реагентов в нужной последовательности. Порции растворов определяемого вещества целесообразно добавлять из бюретки, т.к. их объемы будут различны для обеспечения различных концентраций в серии стандартных растворов. При этом начальный раствор должен содержать все компоненты, кроме определяемого вещества (нулевой раствор) . В исследуемый раствор добавляют растворы необходимых реагентов. Все растворы доводят до постоянного объема, а затем визуально сравнивают интенсивность окраски исследуемого раствора с растворами серии стандартных растворов. Возможно совпадение интенсивности окраски с каким-либо раствором серии. Тогда считается, сто исследуемый раствор имеет такую же концентрацию или содержит столько же определяемого вещества. Если же интенсивность окраски покажется промежуточной между соседними растворами серии, концентрация или содержание определяемого компонента считают средним арифметическим между растворами серии.

Колориметрическое титрование (метод дублирования) . Этот метод основан на сравнении окраски анализируемого раствора с окраской другого раствора- контрольного. Для приготовления контрольного раствора готовят раствор, содержащий все компоненты исследуемого раствора, за исключением определяемого вещества, и все употреблявшиеся при подготовке пробы реактивы, и к нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого раствора уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания. Этот метод основан на уравнивании окрасок анализируемого раствора и раствора с известной концентрацией определяемого вещества - стандартного раствора. Существуют два варианта выполнения колориметрического определения этим методом.

По первому варианту уравнивание окрасок двух растворов с разной концентрацией окрашенного вещества проводят путем изменения толщины слоев этих растворов при одинаковой силе проходящего через растворы светового потока. При этом, несмотря на различие концентраций анализируемого и стандартного растворов, интенсивность светового потока, проходящего через оба слоя этих растворов, будет одинакова. Соотношение между толщинами слоев и концентрациями окрашенного вещества в растворах в момент уравнивания окрасок будет выражаться уравнением:

l 1 = C 2

где l 1 - толщина слоя раствора с концентрацией окрашенного вещества C 1 , а l 2 -толщина слоя раствора с концентрацией окрашенного вещества C 2 .

В момент равенства окрасок отношение толщин слоев двух сравниваемых растворов обратно пропорционально отношению их концентраций.

На основании приведенного уравнения, измерив толщину слоев двух одинаково окрашенных растворов и зная концентрацию одного из этих растворов, легко можно рассчитать неизвестную концентрацию окрашенного вещества в другом растворе.

Для измерения толщины слоя, через который проходит световой поток, можно применять стеклянные цилиндры или пробирки, а при более точных определениях специальные приборы - колориметры.

По второму варианту, для уравнивания окрасок двух растворов с различной концентрацией окрашенного вещества, через слои растворов одинаковой толщины пропускают световые потоки различной интенсивности.

В этом случае оба раствора имеют одинаковую окраску, когда отношение логарифмов интенсивностей падающих световых потоков равно отношению концентраций.

В момент достижения одинаковой окраски двух сравниваемых растворов, при равной толщине их слоев, концентрации растворов прямо пропорциональны логарифмам интенсивностей падающего на них света.

По второму варианту определение может быть выполнено только с помощью колориметра.

Оптическая плотность D , мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения F 0 , падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F , прошедшему через этот слой: D = lg (F 0 /F ), иначе, О. п. есть логарифм величины, обратной пропускания коэффициенту слоя вещества: D = lg (1/t ). (В определении используемой иногда натуральной О. п. десятичный логарифм lg заменяется натуральным ln.) Понятие О. п. введено Р. Бунзеном ; оно привлекается для характеристики ослабления оптического излучения (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в светофильтрах и иных оптических изделиях. Особенно широко О. п. пользуются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии . Различают несколько типов О. п. в зависимости от характера падающего и способа измерения прошедшего потоков излучения (рис. ).

О. п. зависит от набора частот n (длин волн l ), характеризующего исходный поток; её значение для предельного случая одной единственной n называется монохроматической О. п. Регулярная (рис. , а)монохроматическая О. п. слоя нерассеивающей среды (без учёта поправок на отражение от передней и задней границ слоя) равна 0,4343 k n l , где k n - натуральный поглощения показатель среды, l - толщина слоя (k n l = k cl - показатель в уравнении Бугера - Ламберта - Бера закона ; если рассеянием в среде нельзя пренебречь, k n заменяется на натуральный ослабления показатель ). Для смеси нереагирующих веществ или совокупносги расположенных одна за другой сред О. п. этого типа аддитивна, т. е. равна сумме таких же О. п. отдельных веществ или отдельных сред соответственно. То же справедливо и для регулярной немонохроматической О. п. (излучение сложного спектрального состава) в случае сред с неселективным (не зависящим от n ) поглощением. Регулярная немонохроматич. О. п. совокупности сред с селективным поглощением меньше суммы О. п. этих сред. (О приборах для измерения О. п. см. в статьях Денситометр , Микрофотометр , Спектрозональная аэрофотосъёмка , Спектросенситометр , Спектрофотометр , Фотометр .)

Лит.: Гороховский Ю. Н., Левенберг Т. М., Общая сенситометрия. Теория и практика, М., 1963; Джеймс Т., Хиггинс Дж., Основы теории фотографического процесса, пер. с англ., М., 1954.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Оптическая плотность D , мера непрозрачности слоя вещества для световых лучей.

, где

e - коэффициент поглощения (экстинкции) светового потока. Зависит от природы вещества и длины волны света.

С – концентрация вещества в растворе в м/л.

l – толщина слоя светопоглощающего раствора.

Оптическая плотность раствора прямо пропорциональна концентрации светопоглощающего вещества в растворе и толщине слоя раствора. Другими словами, при определённой толщине слоя раствора, оптическая плотность будет тем больше, чем больше концентрация вещества в растворе. Отсюда следует, что, определяя оптическую плотность раствора, можно напрямую определять концентрацию вещества в растворе. При помощи современной техники оптическая плотность может быть измерена очень точно. Увеличивая толщину слоя l можно измерять очень малые концентрации веществ.

Фотоколориметр - оптический прибор для измерения концентрации веществ в растворах. Действие колориметра основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация с окрашивающего вещества. В отличие от спектрофотометра, измерения ведутся в луче не монохроматического, а в полихроматического узко спектрального света, формируемого светофильтром. Применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора. В отличие от спектрофотометров, фотоколориметры просты, недороги и при этом обеспечивают точность, достаточную для многих применений.

Колориметры разделяются на визуальные и объективные (фотоэлектрические) - фотоколориметры. В визуальных колориметрах свет, проходящий через измеряемый раствор, освещает одну часть поля зрения, в то время как на другую часть падает свет, прошедший через раствор того же вещества, концентрация которого известна. Изменяя толщину l слоя одного из сравниваемых растворов или интенсивность I светового потока, наблюдатель добивается, чтобы цветовые тона двух частей поля зрения были неотличимы на глаз, после чего по известным соотношениям между l, I и с может быть определена концентрация исследуемого раствора.

Фотоэлектрические колориметры (фотоколориметры) обеспечивают большую точность измерений, чем визуальные; в качестве приёмников излучения в них используются фотоэлементы (селеновые и вакуумные), фотоэлектронные умножители, фоторезисторы (фотосопротивления) и фотодиоды. Сила фототока приемников определяется интенсивностью падающего на них света и, следовательно, степенью его поглощения в растворе (тем большей, чем выше концентрация). Помимо фотоэлектрического колориметра (фотоколориметра) с непосредственным отсчетом силы тока, распространены компенсационные колориметры, в которых разность сигналов, соответствующих стандартному и измеряемому растворам, сводится к нулю (компенсируется) электрическим или оптическим компенсатором (например, клином фотометрическим); отсчет в этом случае снимается со шкалы компенсатора. Компенсация позволяет свести к минимуму влияние условий измерений (температуры, нестабильности свойств элементов колориметра) на их точность. Показания колориметра не дают сразу значений концентрации исследуемого вещества в растворе - для перехода к ним используют градуировочные графики, полученные при измерении растворов с известными концентрациями.

Измерения с помощью колориметра отличаются простотой и быстротой проведения. Точность их во многих случаях не уступает точности других, более сложных методов химического анализа. Нижние границы определяемых концентраций в зависимости от рода вещества составляют от 10 −3 до 10 −8 моль/л.

21. Схема ФЕКа, который основан на сопоставлении 2-х световых потоков,где Л-лампа, З-зеркала,Сф-светофильтры, К-конденсаторы, А- кювета с контролируемым раствором, Ф1 и Ф2-фотоэлементы,ЭУ-электронный усилитель, ИН-индикатор нуля, ОК-оптический клин.

Принцип работы: световой поток от лампы Л разделяется на 2 потока и отражаясь от зеркал З попадает на одинаковые фотоэлементы Ф1 и Ф2.Поток,который идет через верхний световой канал проходит через светофильтр Сф, конденсата К и оптический клин ОК, а поток света,который идет через нижний световой канал проходит через нижний светофильтр Сф конденсата К и кюветы А, которая заполнена контролируемым веществом. Фотоприёмники Ф1 и Ф2 соединяются встречно и в их контур включается электронный усилитель ЭУ. Меняя положения ОК (оптический клин) добиваются равенства световых потоков в обоих каналах. Тогда оба канала выдадут одинаковые фототоки и сигнал расбаланса на входе в электронный усилитель станет равен нулю, и индикатор ИН покажет ноль. После выставления показания прибора на ноль, т.е. уравновесили схему, помещаем кювету А с контролируемым раствором в прибор, в следствии изменения равенства световых потоков возникнет разбаланс, который подастся на электронный усилитель. Для того,чтобы уровнять световые потоки необходимо перемещать ОК до тех пор, пока не перестанет подаваться сигнал расбаланса на усилитель, т.е. выровняются фототоки и стрелка, которая соединена с оптическим клином не покажет действующее значение концентрации раствора, размещенного в кювете А.

22. Рефрактометры предназначены для определения показателя преломления исследуемого вещества, на основе которого делается вывод о его составе, наличии примесей, определяется процентный состав растворенных сухих веществ. Данные приборы предназначены для изучения неагрессивных жидкостей средней вязкости и твердых тел.

Рефрактометры применяются в химической промышленности,

пищевой промышленности, для анализа продуктов и сырья, в медицине и ветеринарии; в фармацевтической промышленности для исследования водных растворов лекарственных препаратов, а также во многих других отраслях производства.

Обычно показатели преломления жидких и твердых тел рефрактометрией определяют с точностью до 0,0001 на рефрактометрах, в которых измеряют предельные углы полного внутреннего отражения. Наиболее распространены рефрактометры Аббе с призменными блоками и компенсаторами дисперсии, позволяющие определять линии спектра в "белом" свете по шкале или цифровому индикатору. Максимальная точность абсолютных измерений (10 -10) достигается на гониометрах с помощью методов отклонения лучей призмой из исследуемого материала. Для измерения показателей преломления газов наиболее удобны интерференционные методы. Интерферометры используют также для точного (до 10 -7) определения разностей показателей преломления растворов. Для этой же цели служат дифференциальные рефрактометры, основанные на отклонении лучей системой двух-трех полых призм.

Автоматические рефрактометры для непрерывной регистрации показателей преломления в потоках жидкостей используют на производствах при контроле технологических процессов и автоматическом управлении ими, а также в лабораториях для контроля ректификации и как универсальные детекторы жидкостных хроматографов.

Рефрактометрия, выполняющаяся с помощью рефрактометров, является одним из распространённых методов идентификации химических соединений, количественного и структурного анализа, определения физико-химических параметров веществ.

23.

1- осветитель; 2- коллиматор; 3 - кювета; 4, 5 -- призмы; 6 - фотоэлементы.

Кювета состоит из двух камер, разделенных прозрачной перегородкой, одна из которых заполне­на эталонным раствором заданной концентрации, а другая - контролируемым раствором. При равенстве показателей преломления эталонной п и контролируемой п" жидкостей луч света проходит через обе камеры без отклонений, а при изменении кон­центрации контролируемой среды, показатель п" изменяется и луч света отклоняется. Отклонение луча тем больше, чем заметнее различие между концентрациями эталонной и контролируемой жидкостей. Конструкция дифференциальной кюветы обеспечива­ет температурную компенсацию, т. е. равенство температур, при которых находятся обе жидкости.

24. При измерении масс-спектрометрами используют основной физический параметр вещества - массу молекулы или атома. Это позволяет определять состав вещества независимо от его хи­мических и физических свойств. Преимущество масс-спектрометрическего метода - быстрый и полный анализ многокомпонентных газовых смесей. При этом для анализа требуются ничтожно малые количества вещества. "

В условиях глубокого вакуума молекулы или атомы анализи­руемого вещества ионизируются с образованием положительно заряженных ионов. Ионы, получившие ускорение в электрическом поле, разделяются по своим массам в магнитном поле. Сумма электрических зарядов движущихся ионов образует ионный ток. Измерение силы ионного тока, создаваемого частицами той или иной массы, позволяет судить о концентрации частиц в общем составе анализируемого вещества. В масс-спектрометре любой конструкции основной частью является масс-анализатор, в котором происходят ионизация, формирование ионного луча, разделение его на составляющие ионные лучи, соответствующие строго оп­ределенным массам, и последовательное раздельное собирание ионных лучей на коллекторе. Соответственно указанным процес­сам масс-анализатор любого масс-спектрометра состоит из источ­ника ионов, собственно анализатора и приемника ионов.

По конфигурации и взаимной ориентации магнитных и электри­ческих полей, а также по характеру изменения этих полей во вре­мени масс-спектрометры делятся на четыре группы:.с разделением ионов в однородном магнитном поле; с разделением ионов в не­однородном магнитном поле; с разделением ионов по времени пролета; радиочастотные.

Преимущественное применение получили масс-спектрометры с разделением ионов в однородном магнитном поле и по времени пролета.

25. Автоматический рефрактометр.


26. Действие рефрактометра

РН метрия


Тела, пропускающие и поглощающие свет (кроме матовых и мутных сред), характеризуются оптической прозрачностью θ, непрозрачностью О и оптической плотностью D.

Часто вместо коэффициентов пропускания и отражения используют оптическую плотность D.

В фотографии оптическая плотность наиболее распространена для выражения спектральных свойств светофильтров и меры почернения (потемнения) негативов и позитивов. Величина плотности зависит от таких одновременно действующих факторов: структуры падающего светового потока (сходящихся, расходящихся, параллельных лучей или рассеянного света) структуры прошедшего или отраженного потока (интегрального, регулярного, диффузного).

Оптическая плотность D, мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения F0, падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F, прошедшему через этот слой: D = lg (F0/F), иначе, Оптическая плотность есть логарифм величины, обратной пропускания коэффициенту слоя вещества: D = lg (1/t).

В определении оптической плотности иногда десятичный логарифм lg заменяется натуральным ln.

Понятие Оптическая плотность введено Р. Бунзеном; оно используется для характеристики ослабления оптического излучения (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в светофильтрах и иных оптических изделиях.

Особенно широко оптическая плотность используются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии. Различают несколько типов Оптическая плотность в зависимости от характера падающего и способа измерения прошедшего потоков излучения

Различается плотность D для белого света, монохроматическая D λ для отдельных длин волн и зональная D зон, выражающая ослабление светового потока в синей, зеленой или красной зоне спектра (D c 3 , D 3 3 , D K 3).

Плотность прозрачных сред (светофильтров, негативов) определяется в проходящем свете десятичным логарифмом величины, обратной коэффициенту пропускания τ:

D τ = lg(1/τ) = -lgτ

Плотность поверхностей выражается величиной отраженного света и определяется десятичным логарифмом коэффициента отражения ρ:

D ρ = lg (1/ ρ) = - lg ρ.

Величина плотности D = l ослабляет свет в 10 раз.

Интервал оптических плотностей прозрачных сред практически неограничен: от полного пропускания света (D = 0) до его полного поглощения (D = 6 и более, ослабление в миллионы раз). Интервал плотностей поверхностей предметов ограничен содержанием в их отраженном свете поверхностно отраженной составляющей порядка 4-1 % (черная типографская краска, черное сукно). Практически предельные плотности D = 2,1...2,4 имеют черный бархат и черный мех, ограничиваемые поверхностно отраженной составляющей порядка 0,6-0,3 %.



Оптическая плотность связана простыми зависимостями с концентрацией светопоглощающего вещества и со зрительным восприятием наблюдаемого объекта – его светлотой, чем и объясняется широкое использование этого параметра.

Заменив оптические коэффициенты на потоки излучения – упавший на среду (Ф 0) и вышедший из нее (Фτ или Фρ), получим выражения

Чем больше света поглощается средой, тем она темнее и тем выше ее оптическая плотность как в проходящем так и в отраженном свете.

Оптическая плотность может быть определена по световым коэффициентам. В этом случае ее называют визуальной.

Визуальная плотность в проходящем свете равна логарифму величины, обратной световому коэффициенту пропускания:

Визуальная плотность в отраженном свете определяется по формуле

Для нейтрально-серых оптических сред. т.е. для серых светофильтров, серых шкал, черно-белых изображений, оптические и световые коэффициенты совпадают, поэтому совпадают и оптические плотности:

Если известно, о какой плотности идет речь, индекс при D опускают. Описанные выше оптические плотности – интегральные , они отражают изменение мощностных характеристик белого (смешанного) излучения. Если оптическая плотность измеряется для монохроматического излучения, то ее называют монохроматической (спектральной). Она определяется с использованием монохроматических потоков излучения Ф λ по формуле

В приведенных выше формулах лучистые потоки Ф, могут быть заменены на световые потоки F λ , что следует из выражения

Поэтому можно записать:

Для цветных сред интегральные оптическая и визуальная плотности не совпадают, так как они рассчитываются по разным формулам:

Для фотоматериалов с прозрачной подложкой оптическая плотность определяется без плотности подложки и неэкспонированного эмульсионного слоя после обработки, называемой в совокупности «нулевой» плотностью или плотностью вуали D 0 .

Суммарная оптическая плотность двух и более светопоглощающих слоев (например, светофильтров) равна сумме оптических плотностей каждого слоя (фильтра). Графически характеристика поглощения выражается кривой зависимости оптической плотности D от длины волны белого света λ, нм.

Оптическая прозрачность Θ характеристика вещества толщиной 1 см, показывающая, какая доля излучения заданного спектра в виде параллельных лучей проходит через него без изменения направления: Θ = Ф τ /Ф.

Оптическая прозрачность связана не с пропусканием излучения вообще, а с его направленным пропусканием, и характеризует одновременно поглощение и рассеяние. Например, матовое стекло, оптически непрозрачное, пропускает рассеянный свет; УФ фильтры прозрачны для видимого света и непрозрачны для УФ излучения; черные ИК фильтры пропускают ИК излучение и не пропускают видимый свет.

Оптическую прозрачность определяет кривая спектрального пропускания для длин волн оптического диапазона излучений. Прозрачность объективов для белого света увеличивается при нанесении на линзы просветляющих покрытий. Прозрачность атмосферы зависит от наличия в ней мелких частиц пыли, газа, водяных паров, находящихся во взвешенном состоянии и влияющих на характер освещения и рисунок изображения при съемке. Прозрачность воды зависит от различных взвесей, мути и толщины ее слоя.

Оптическая непрозрачность О – отношение падающего светового потока к прошедшему через слой – величина, обратная прозрачности: О = Ф/Ф τ = l/Θ. Непрозрачность может изменяться от единицы (полное пропускание) до бесконечности и показывает, во сколько раз уменьшается свет, проходя через слой. Непрозрачность характеризует плотность среды. Переход к оптической плотности выражается десятичным логарифмом непрозрачности:
D = lg О =lg (l/τ) = - lg τ .

Спектральные отличия тел. По характеру излучения и поглощения светового потока все тела отличаются от ЧТ и условно делятся на селективные и серые, отличающиеся избирательным и неизбирательным поглощением, отражением и пропусканием. К селективным относятся хроматические тела, обладающие какой-либо цветностью, к серым – ахроматические. Термин «серый» характеризуется двумя признаками: характером излучения и поглощения относительно ЧТ и цветом поверхности, наблюдаемым в обиходе. Второй признак широко используется при визуальном определении цвета ахроматических тел – белых, серых и черных, отражающих спектр соответственно белого света от единицы до нуля.

Серое тело обладает степенью поглощения света, близкой к поглощению ЧТ. Коэффициент поглощения ЧТ равен 1, а серого тела – близок к 1 и также не зависит от длины волны излучения или поглощения. Распределение энергии, излучаемой по спектру, у серых тел для каждой данной температуры подобно распределению энергии ЧТ при той же температуре, но интенсивность излучения меньше в несколько раз (рис. 23).

Для несерых тел поглощение избирательно и зависит от длины волны, поэтому они считаются серыми лишь в определенных, узких интервалах длин волн, для которых коэффициент поглощения приблизительно постоянен. В видимой области спектра свойствами серого тела обладают уголь (α = 0,8)< сажа (α = 0,95) и платиновая чернь (α = 0,99).

Селективные (избирательные) тела обладают цветом и характеризуются кривыми зависимости коэффициентов отражения, пропускания или поглощения от длины волны падающего излучения. При освещении белым светом цвет поверхности таких тел определяется по максимальным величинам кривой спектрального отражения илипо минимальной величине кривой спектрального поглощения. Цвет прозрачных тел (светофильтров) определяется в основном кривой поглощения (плотностью D) или кривой пропускания τ. Кривые спектрального поглощения и пропускания характеризуют вещество селективных тел только для белого света. При их освещении цветным светом кривые спектрального отражения или пропускания меняются.

Белый, серый и черный цвет тел – это визуальное ощущение ахроматичности, применимое к отражению поверхностей и пропусканию прозрачных сред. Ахроматичность графически выражается горизонтальной прямой или едва заметной волнистой линией, параллельной оси абсцисс и расположенной на различном уровне оси ординат в световом диапазоне длин волн (рис. 24, а, б, в). Ощущение белого цвета создают поверхности с наибольшим равномерным коэффициентом

отражения по спектру (ρ = 0,9...0,7 – белые бумаги). Поверхности серого цвета имеют равномерный коэффициент отражения р = 0,5...0,05. Черные поверхности имеют ρ = 0,05...0,005 (черное сукно, бархат, мех). Разграничение это приблизительно и условно. Для прозрачных сред (например нейтральных серых светофильтров) характеристика ахроматичности также выражается горизонтальной линией поглощения (плотностью D, показывающей в какой степени ослабляется белый свет).

Светлота поверхности – это относительная степень зрительного ощущения, возникающего в результате действия цвета отраженного излучения на три цветоощущающих центра зрения. Графически светлота выражается суммарной плотностью этого излучения в диапазоне белого света. В общей светотехнике светлота неправильно используется для зрительной количественной оценки различия двух смежных поверхностей, различающихся по яркости.

Светлота белой поверхности, освещенной белым светом. В качестве 100 %-ной принимается светлота идеально белой поверхности (покрытой сернокислым барием или магнием) с ρ = 0,99. При этом характеризующая ее площадь на графике (рис. 24, а) ограничивается линией светлоты на уровне ρ = 1 или 100 %. На практике белыми считаются поверхности, светлота которых соответствует 80-90 % (ρ = 0,8...0,9). Линия светлоты серых поверхностей приближается к оси абсцисс (рис. 24, е), поскольку они отражают часть белого света. Линия светлоты черного бархата, практически не отражающего света, совмещается с осью абсцисс.

Светлота цветных поверхностей, освещенных белым светом, определяется на графике площадью, ограниченной кривой спектрального коэффициента отражения. Поскольку бесформенная площадь не может отразить количественную степень светлоты, она переводится в площадь прямоугольника с основанием на оси абсцисс (рис. 24, г, д, е). Высота прямоугольника определяет светлоту в процентах .

Светлота цветных поверхностей, освещенных цветным светом , выражается на графике площадью, ограниченной результирующей кривой, полученной в результате перемножения спектральной характеристики освещения на спектральную характеристику отражения, поверхности. Если цвет освещения не совпадает с цветом поверхности, то отраженный свет изменяет свой цветовой тон, насыщенность и светлоту.