Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Единица измерения расстояния между зарядами. Единицы измерения заряда. Закон Кулона

Страница 56

ЗАКОН КУЛОНА(уч.10кл.стр.354-362)

Основной закон электростатики. Понятие точечного заряженного тела.

Измерение силы взаимодействия зарядов с помощью крутильных весов. Опыты Кулона

Определение точечного заряда

Закон Кулона. Формулировка и формула

Сила Кулона

Определение единицы заряда

Коэффициент в законе Кулона

Сравнение электростатических и гравитационных сил в атоме

Равновесие статических зарядов и его физический смысл (на примере трех зарядов)

Основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел.

Установлен Шарлем Огюстеном Кулоном в 1785 году и носит его имя.

В природе точечных заряженных тел не существует, но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В током случае эти тела можно рассматривать, как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между ними. Опыт показывает, что воздух очень мало влияет на силу этого взаимодействия и она оказывается почти такой же как в вакууме.

Опыт Кулона

Первые результаты по измерению силы взаимодействия зарядов получены в 1785 г. французским ученым Шарлем Огюстеном Кулоном

Для измерения силы использовались крутильные весы.

Маленькая тонкая незаряженная золотая сфера на одном конце изолирующего коромысла, подвешенного на упругой серебряной нити, уравновешивалась на другом концу коромысла бумажным диском.

Поворотом коромысла она приводилась в контакт с такой же неподвижной заряженной сферой, в результате чего ее заряд делился поровну между сферами.

Диаметр сфер выбирался много меньше расстояния между ними, чтобы исключить влияние размеров и формы заряженных тел на результаты измерений.

Точечный заряд – заряженное тело, размер которого много меньше расстояния его возможного действия на другие тела.

Сферы, имеющие одноименные заряды, начинали отталкиваться, закручивая нить. Угол поворота был пропорционален силе, действующей на подвижную сферу.

Расстояние между сферами измерялось по специальной градуировочной шкале.

Разряжая сферу 1 после измерения силы и соединяя ее вновь с неподвижной сферой, Кулон уменьшал заряд на взаимодействующих сферах в 2,4,8 и т.д. раз,

Закон Кулона:

Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними, и направлена по прямой, соединяющей заряды.

k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Силу F12 называю силой Кулона

Сила Кулона центральная, т.е. направлена по линии соединяющей центры зарядов.

В СИ единица заряда является не основной, а производной, и определяется с помощью Ампера – основной единицы СИ.

Кулон – электрический заряд, проходящий через поперечное сечение проводника при силе тока в 1 А за 1 с

В СИ коэффициент пропорциональности в законе Кулона для вакуума:

k = 9*109 Нм2/Кл2

Часто коэффициент записывают в виде:

e0 = 8,85*10-12 Кл2/(Нм2) – электрическая постоянная

Закон Кулона записывается в форме:

Если точечный заряд поместить в среду с относительной диэлектрической проницаемостью e, отличную от вакуума, кулоновская сила уменьшится в e раз.

У любой среды кроме вакуума e > 1

Согласно закону Кулона два точечных заряда по 1 Кл, на расстоянии 1 м в вакууме, взаимодействуют с силой

Из этой оценки видно, что заряд в 1 Кулон – очень большая величина.

На практике пользуются дольными единицами – мкКл (10-6), мКл (10-3)

1 Кл содержит 6*1018 зарядов электронов.

На примере сил взаимодействия электрона и протона в ядре можно показать, что электростатическая сила взаимодействия частиц больше гравитационной примерно на 39 порядков. Однако электростатические силы взаимодействия макроскопических тел (в целом электронейтральных) определяются лишь очень малыми избыточными зарядами, находящимися на них, и поэтому не велики по сравнению с гравитационными, зависящими от массы тел.

Возможно ли равновесие статических зарядов?

Рассмотрим систему из двух положительных точечных зарядов q1 и q2.

Найдем, в какую точку следует поместить третий заряд, чтобы он находился в равновесии, а так же определим величину и знак этого заряда.

Статическое равновесие возникает тогда, когда геометрическая (векторная) сумма сил, действующих на тело, равна нулю.

Точка, в которой силы, действующие на третий заряд q3, могут компенсировать друг друга, находится на прямой между зарядами.

При этом заряд q3 может быть как положительным так и отрицательным. В первом случае компенсируются силы отталкивания, во втором – силы притяжения.

Учитывая закон Кулона статическое равновесие зарядов будет в случае:

Равновесие заряда q3 не зависит ни от его величины, ни от знака заряда.

При изменении заряда q3 в равной мере меняются как силы притяжения (q3 положительный), так и силы отталкивания (q3 отрицательный)

Решив квадратное уравнение относительно x можно показать, что заряд любого знака и величины будет находится в равновесии в точке на расстоянии x1 от заряда q1:

Выясним устойчивым или неустойчивым будет положение третьего заряда.

(При устойчивом равновесии тело, выведенное из положения равновесия, возвращается к нему, при неустойчивом – удаляется от него)

При горизонтальном смещении силы отталкивания F31, F32 меняются из-за изменения расстояний между зарядами, возвращая заряд к положению равновесия.

При горизонтальном смещении равновесие заряда q3 устойчивое.

При вертикальном смещении, равнодействующая F31, F32 выталкивает q3

Перейти на страницу:

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые — притягиваются).

Коэффициент k

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10-7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

j}\frac{e^2}{r_{ij}}" src="http://upload.wikimedia.org/math/d/0/8/d081b99fac096b0e0c5b4290a9573794.png">.

Здесь m — масса электрона, е — его заряд, — абсолютная величина радиус-вектора j -го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

Закон Кулона с точки зрения квантовой электродинамики

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.

История

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил, что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщениео том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния» . Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785).

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона, принцип суперпозиции и уравнения Максвелла

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и . То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей.

Cтепень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м, где — масса электрона, — постоянная Планка, — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид:

где — комптоновская длина волны электрона, — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом , можно описать зависимостью вида . Эффективный заряд зависит от расстояния по логарифмическому закону:

— т. н. постоянная тонкой структуры ≈7.3·10−3;

— т. н. классический радиус электрона ≈2.8·10−13 см.

Эффект Юлинга

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц.

Закон Кулона и сверхтяжелые ядра

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом 170" src="http://upload.wikimedia.org/math/0/d/7/0d7b5476a5437d2a99326cf04b131458.png"> осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона.

Значение закона Кулона в истории науки

Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме.

Зако́н Куло́на - это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

    точечность зарядов - то есть расстояние между заряженными телами много больше их размеров - впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

    их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;

    взаимодействие в вакууме .

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где - сила, с которой заряд 1 действует на заряд 2; - величина зарядов; - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - ); - коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые - притягиваются).

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер , а единица заряда - кулон - производная от него. Величина ампера определена таким образом, что k = c 2 ·10 −7 Гн /м = 8,9875517873681764·10 9 Н ·м 2 /Кл 2 (или Ф −1 ·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10 −12 Ф/м - электрическая постоянная .

Тема 1.1 ЭЛЕКТРИЧЕСКИЕ ЗАРЯДЫ.

Раздел 1 ОСНОВЫ ЭЛЕКТРОДИНАМИКИ

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

2. Силы взаимодействия между зарядами.

Закон Кулона.

3. Диэлектрическая проницаемость среды.

4. Международная система единиц в электричестве.

1. Электризация тел. Понятие о величине заряда.

Закон сохранения заряда.

Если две поверхности привести в плотное соприкосновение, то возможен переход электронов с одной поверхности на другую, при этом на этих поверхностях появляются электрические заряды.

Это явление называется ЭЛЕКТРИЗАЦИЕЙ. При трении площадь плотного соприкосновения поверхностей увеличивается, увеличивается и величина заряда на поверхности – такое явление называют ЭЛЕКТРИЗАЦИЕЙ ТРЕНИЕМ.

В процессе электризации происходит перераспределение зарядов, в результате которого обе поверхности заряжаются равными по величине, противоположными по знаку зарядами.

Т.к. все электроны имеют одинаковые заряды (отриц.) е = 1,6 10Кл, то для того, чтобы определить величину заряда на поверхности (q), необходимо знать, сколько электронов в избытке или недостатке на поверхности (N) и заряд одного электрона.

В процессе электризации новые заряды не появляются и не исчезают, а только происходит их перераспределение между телами или частями тела, поэтому суммарный заряд замкнутой системы тел остается постоянным, в этом и заключается смысл ЗАКОНА СОХРАНЕНИЯ ЗАРЯДА.

2. Силы взаимодействия между зарядами.

Закон Кулона.

Электрические заряды взаимодействуют между собой, находясь на расстоянии, при этом одноименные заряды отталкиваются, а разноименные – притягиваются.

Впервые выяснил опытным путем отчего зависит сила взаимодействия между зарядами французский ученый Кулон и вывел закон, названный законом КУЛОНА. Закон фундаментальный т.е. основан на опытах. При выводе этого закона Кулон использовал крутильные весы.

3) k – коэффициент, выражающий зависимость от окружающей среды.

Формула закона Кулона.

Сила взаимодействия между двумя неподвижными точечными зарядами прямо пропорциональны произведению величин этих зарядов и обратно пропорциональна квадрату расстояний между ними, и зависит от среды, в которой находятся эти заряды, и направлена вдоль прямой, соединяющей центры этих зарядов.

3. Диэлектрическая проницаемость среды.

Е - диэлектрическая проницаемость среды, зависит от окружающей заряды среды.

Е = 8,85*10 - физическая постоянная, диэлектрическая проницаемость вакуума.

Е – относительная диэлектрическая проницаемость среды, показывает во сколько раз сила взаимодействия между точечными зарядами в вакууме больше чем в данной среде. В вакууме самое сильное взаимодействие между зарядами.


4. Международная система единиц в электричестве.

Основной единицей для электричества в системе «СИ» является сила тока в 1А, все остальные единицы измерения являются производными от 1Ампера.

1Кл – количество электрического заряда, переносимого заряженными частицами через поперечное сечение проводника при силе тока в 1А за 1с.

Тема 1.2 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

1. Электрическое поле – как особый вид материи.

6. Связь разности потенциалов с напряженностью электрического поля.

1. Электрическое поле – как особый вид материи.

В природе как вид материи существует электромагнитное поле. В разных случаях электромагнитное поле проявляет себя по - разному, так например около неподвижных зарядов проявляет себя только электрическое поле, которое называют электростатическим. Около подвижных зарядов можно обнаружить как электрическое, так и магнитное поля, которые в совокупности представляют ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ.

Рассмотрим свойства электростатических полей:

1) Электростатическое поле создается неподвижными зарядами, обнаружить такие поля можно

с помощью пробных зарядов (небольшой по величине положительный заряд), т.к. только на них электрическое поле оказывает силовое действие, которое подчиняется закону Кулона.

2. Напряженность электрического поля.

Эл.поле как вид материи обладает энергией, массой, распространяется в пространстве с конечной скоростью и теоретических границ не имеет.

Практически считается, что поля нет если оно не оказывает заметного действия на пробные заряды.

Так как обнаружить поле можно с помощью силового действия на пробные заряды, то основной характеристикой электрического поля является напряженность.

Если в одну и ту же точку электрического поля вносить разные по величине пробные заряды, то между действующей силой и величиной пробного заряда прямая пропорциональная зависимость.

Коэффициентом пропорциональности между действующей силой и величиной заряда является напряженность Е.

Е = -формула расчета напряженности электрического поля, если q = 1 Кл, то | E | = | F |

Напряженность является силовой характеристикой точек электрического поля, т.к. она численно равна силе, действующей на заряд в 1 Кл в данной точке электрического поля.

Напряженность – величина векторная, вектор напряженности по направлению совпадает с вектором силы, действующей на положительный заряд в данной точке электрического поля.

3. Линии напряженности электрического поля. Однородное электрическое поле.

Для того, чтобы наглядно можно было изображать электрическое поле, т.е. графически, используют линии напряженности электрического поля. Это такие линии, иначе называемые силовыми линиями, касательные к которым по направлению совпадают с векторами напряженности в точках электрического поля через которые эти линии проходят,

Линии напряженности обладают следующими свойствами:

1) Начинаются на полож. зарядах, заканчиваются – на отрицательных, или начинаются на положител. зарядах и уходят в бесконечность, или приходят из бесконечности и заканчиваются на положительных зарядах..

2) Эти линии непрерывны и нигде не пересекаются.

3) Густота линий (кол-во линий на единицу площади поверхности) и напряженность электрического поля находятся в прямой и пропорциональной зависимости.

В однородном электрическом поле напряженность во всех точках поля одинакова, графически такие поля изображаются параллельными линиями на равном расстоянии друг от друга. Такое поле можно получить между двумя параллельными плоскими заряженными пластинами на маленьком расстоянии друг от друга.

4. Работа по перемещению заряда в электрическом поле.

Поместим в однородное электрическое поле электрический заряд. Со стороны поля на заряд будут действовать силы. Если заряд перемещать, то может совершаться работа.

Совершенная работа на участках:

А = q E d - формула расчета работы по перемещению заряда в электрическом поле.

Вывод: Работа по перемещению заряда в электрическом поле от формы траектории не зависит, а она зависит от величины перемещаемого заряда (q) , напряженности поля (Е), а также от выбора начальной и конечной точек перемещения (d).

Если заряд в электрическом поле перемещать по замкнутому контуру, то совершаемая работа будет равна 0. Такие поля называются потенциальными полями. Тела в таких полях обладают потенциальной энергией, т.о. электрический заряд в любой точке электрического поля обладает энергией и совершаемая работа в электрическом поле равна разности потенциальных энергий заряда в начальной и конечной точках перемещения.

5. Потенциал. Разность потенциалов. Напряжение.

Если в данную точку электрического поля помещать разные по величине заряды, то потенциальная энергия заряда и его величина находятся в прямой пропорциональной зависимости.

-(фи) потенциал точки электрического поля

Потенциал является энергетической характеристикой точек электрического поля, т.к. он численно равен потенциальной энергии заряда в 1 Кл в данной точке электрического поля.

На равных расстояниях от точечного заряда потенциалы точек поля одинаковы. Эти точки образуют поверхность равного потенциала, и такие поверхности называются эквипотенциальными поверхностями. На плоскости это окружности, в пространстве – это сферы.

Напряжение

Формулы расчета работы по перемещению заряда в электрическом поле.

1В – напряжение между точками электрического поля при перемещении в которых заряда в 1Кл совершается работа в 1 Дж.

Формула, устанавливающая связь между напряженностью электрического поля, напряжением и разностью потенциалов.

Напряженность численно равна напряжению или разности потенциалов между двумя точками поля взятыми вдоль одной силовой линии на расстоянии 1м. Знак (-) означает, что вектор напряженности всегда направлен в сторону точек поля с уменьшающимся потенциалом.

Публикации по материалам Д. Джанколи. "Физика в двух томах" 1984 г. Том 2.

Между электрическими зарядами действует сила. Как она зависит от величины зарядов и других факторов?
Этот вопрос исследовал в 1780-е годы французский физик Шарль Кулон (1736-1806). Он воспользовался крутильными весами, очень похожими на те, которые применял Кавендиш для определения гравитационной постоянной.
Если к шарику на конце стержня, подвешенного на нити, подности заряд, стержень слегка отклоняется, нить закручивается, и угол поворота нити будет пропорционален действующей между зарядами силе (крутильные весы). С помощью этого прибора Кулон определил зависимость силы от величины зарядов и расстояния между ними.

В те времена еще не было приборов для точного определения величины заряда, но Кулон сумел приготовить небольшие шарики с известным соотношением зарядов. Если заряженный проводящий шарик, рассуждал он, привести в соприкосновение с точно таким же незаряженным шариком, то имевшийся на первом заряд в силу симметрии распределится поровну между двумя шариками.
Это дало ему возможность получать заряды, составлявшие 1/2, 1/4 и т.д. от первоначального.
Несмотря на некоторые трудности, связанные с индуцированием зарядов, Кулону удалось доказать, что сила, с которой одно заряженное тело действует на другое малое заряженное тело, прямо пропорциональна электрическому заряду каждого из них.
Другими словами, если заряд любого из этих тел удвоить, то удвоится и сила; если же удвоить одновременно заряды обоих тел, то сила станет вчетверо больше. Это справедливо при условии, что расстояние между телами остается постоянным.
Изменяя расстояние между телами, Кулон обнаружил, что действующая между ними сила обратно пропорциональна квадрату расстояния: если расстояние, скажем, удваивается, сила становится вчетверо меньше.

Итак, заключил Кулон, сила, с которой одно малое заряженное тело (в идеальном случае -точечный заряд, т.е. тело, подобно материальной точке не имеющее пространственных размеров) действует на другое заряженное тело, пропорциональна произведению их зарядов Q 1 и Q 2 и обратно пропорциональна квадрату расстояния между ними:

Здесь k -коэффициент пропорциональности.
Это соотношение известно как закон Кулона; его справедливость подтверждена тщательными экспериментами, гораздо более точными, чем первоначальные трудно воспроизводимые опыты Кулона. Показатель степени 2 установлен в настоящее время с точностью 10 -16 , т.е. он равен 2 ± 2×10 -16 .

Коль скоро мы теперь имеем дело с новой величиной - электрическим зарядом, мы можем подобрать такую единицу измерения, чтобы постоянная к в формуле равнялась единице. И действительно, такая система единиц еще недавно широко использовалась в физике.

Речь идет о системе СГС (сантиметр-грамм-секунда), в которой используется электростатическая единица заряда СГСЭ. По определению два малых тела, каждое с зарядом 1 СГСЭ, расположенные на расстоянии 1 см друг от друга, взаимодействуют с силой 1 дина.

Теперь, однако, заряд чаще всего выражают в системе СИ, где его единицей является кулон (Кл).
Точное определение кулона через электрический ток и магнитное поле мы приведем позднее.
В системе СИ постоянная k имеет величину k = 8,988×10 9 Нм 2 /Кл 2 .

Заряды, возникающие при электризации трением обычных предметов (расчески, пластмассовой линейки и т.п.), по порядку величины составляют микрокулон и меньше (1 мкКл = 10 -6 Кл).
Заряд электрона (отрицательный) приблизительно равен 1,602×10 -19 Кл. Это наименьший известный заряд; он имеет фундаментальное значение и обозначается символом е , его часто называют элементарным зарядом.
е = (1,6021892 ± 0,0000046)×10 -19 Кл, или е ≈ 1,602×10 -19 Кл.

Поскольку тело не может приобрести или потерять долю электрона, суммарный заряд тела должен быть целым кратным элементарного заряда. Говорят, что заряд квантуется (т.е. может принимать лишь дискретные значения). Однако, поскольку заряд электрона е очень мал, мы обычно не замечаем дискретности макроскопических зарядов (заряду 1 мкКл соответствуют примерно 10 13 электронов) и считаем заряд непрерывным.

Формула Кулона характеризует силу, с которой один заряд действует на другой. Эта сила направлена вдоль линии, соединяющей заряды. Если знаки зарядов одинаковы, то силы, действующие на заряды, направлены в противоположные стороны. Если же знаки зарядов различны, то действующие на заряды силы направлены навстречу друг другу.
Заметим, что в соответствии с третьим законом Ньютона сила, с которой один заряд действует на другой, равна по величине и противоположна по направлению силе, с которой второй заряд действует на первый.
Закон Кулона можно записать в векторной форме подобно закону всемирного тяготения Ньютона:

где F 12 - вектор силы, действующей на заряд Q 1 со стороны заряда Q 2,
- расстояние между зарядами,
- единичный вектор, направленный от Q 2 к Q 1.
Следует иметь в виду, что формула применима лишь к телам, расстояние между которыми значительно больше их собственных размеров. В идеальном случае это точечные заряды. Для тел конечного размера не всегда ясно, как отсчитывать расстояние r между ними, тем более что распределение заряда может быть и неоднородным. Если оба тела - сферы с равномерным распределением заряда, то r означает расстояние между центрами сфер. Важно также понимать, что формула определяет силу, действующую на данный заряд со стороны единственного заряда. Если система включает несколько (или много) заряженных тел, то результирующая сила, действующая на данный заряд, будет равнодействующей (векторной суммой) сил, действующих со стороны остальных зарядов. Постоянная к в формуле Закона Кулона обычно выражается через другую константу, ε 0 , так называемую электрическую постоянную, которая связана с k соотношением k = 1/(4πε 0) . С учетом этого закон Кулона можно переписать в следующем виде:

где с наивысшей на сегодня точностью

или округленно

Запись большинства других уравнений электромагнитной теории упрощается при использовании ε 0 , поскольку в окончательном результате часто сокращается. Поэтому мы будем обычно использовать Закон Кулона, считая, что:

Закон Кулона описывает силу, действующую между двумя покоящимися зарядами. Когда заряды движутся, между ними возникают дополнительные силы, и их мы обсудим в последующих главах. Здесь же рассматриваются только покоящиеся заряды; этот раздел учения об электричестве называется электростатикой .

Продолжение следует. Коротко о следующей публикации:

Электрическое поле - один из двух компонентов электромагнитного поля, представляющий собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, либо возникающий при изменении магнитного поля.

Замечания и предложения принимаются и приветствуются!