Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Какой свет поглощает космическую пыль. Космическая пыль – источник жизни во Вселенной

Межзвездная пыль – это продукт разнообразных по своей интенсивности процессов, протекающих во всех уголках Вселенной, а ее невидимые частицы достигают даже поверхности Земли, летая в атмосфере вокруг нас.

Многократно подтвержденный факт – природа не любит пустоты. Межзвездное космическое пространство, представляющееся нам вакуумом, на самом деле заполнено газом и микроскопическими, размером в 0,01-0,2 мкм, частицами пыли. Соединение этих невидимых элементов рождает объекты огромной величины, своего рода облака Вселенной, способные поглощать некоторые виды спектрального излучения звезд, иногда полностью скрывая их от земных исследователей.

Из чего состоит межзвездная пыль?

Эти микроскопические частицы имеют ядро, которое формируется в газовой оболочке звезд и полностью зависит от ее состава. Например, из крупиц углеродных светил образуется графитовая пыль, а из кислородных – силикатная. Это интересный процесс, длящийся целыми десятилетиями: при остывании звезды теряют свои молекулы, которые улетая в пространство, соединяются в группы и становятся основой ядра пылинки. Далее формируется оболочка из атомов водорода и более сложных молекул. В условиях низких температур межзвездная пыль находится в виде кристалликов льда. Странствуя по Галактике, маленькие путешественники теряют часть газа при нагревании, но место улетевших молекул занимают новые.

Расположение и свойства

Основная часть пыли, которая приходится на нашу Галактику, сосредоточена в области Млечного Пути. Она выделяется на фоне звезд в виде черных полос и пятен. Несмотря на то, что вес пыли ничтожен в сравнении с весом газа и составляет всего 1%, она способна скрывать от нас небесные тела. Хотя частички друг от друга и отделяют десятки метров, но даже в таком количестве наиболее плотные области поглощают до 95% света, излучаемого звездами. Размеры газопылевых облаков в нашей системе действительно огромны, они измеряются сотнями световых лет.

Влияние на наблюдения

Глобулы Теккерея делают невидимой область неба, расположенную за ними

Межзвездная пыль поглощает большую часть излучения звезд, особенно в синем спектре, она искажает их свет и полярность. Наибольшее искажение получают короткие волны далеких источников. Микрочастицы, смешанные с газом, заметны в виде темных пятен на Млечном Пути.

В связи с этим фактором ядро нашей Галактики полностью скрыто и доступно для наблюдения только в инфракрасных лучах. Облака с высокой концентрацией пыли становятся практически непрозрачными, поэтому частицы, находящиеся внутри, не теряют свою ледяную оболочку. Современные исследователи и ученые считают, что именно они, слипаясь, образуют ядра новых комет.

Наукой доказано влияние гранул пыли на процессы образования звезд. Эти частицы содержат различные вещества, в том числе металлы, которые выступают катализаторами многочисленных химических процессов.

Наша планета каждый год увеличивает свою массу за счет падающей межзвездной пыли. Конечно, эти микроскопические частицы незаметны, а чтобы их найти и изучить исследуют дно океана и метеориты. Сбор и доставка межзвездной пыли стали одной из функций космических аппаратов и миссий.

При попадании в атмосферу Земли крупные частицы теряют свою оболочку, а мелкие незримо кружат годами вокруг нас. Космическая пыль вездесуща и схожа во всех галактиках, астрономы регулярно наблюдают темные черточки на лике далеких миров.

Здравствуйте!

Сегодня мы поговорим на весьма интереснейшую тему, связанною с такой наукой, как астрономия! Речь пойдёт о космической пыли. Предполагаю, что многие впервые узнали о ней. Значит, нужно рассказать о ней всё, что только мне известно! В школе - астрономия была моим одним из любимых предметов, скажу больше - самым любимым, потому, именно по астрономии я сдавала экзамен. Хотя мне и выпал 13 билет, который был самым сложным, но с экзаменом я сдала прекрасно и осталась довольна!

Ежели сказать совсем доступно, что такое космическая пыль, то можно представить все-все осколки, которые только есть во Вселенной от космического вещества, например, от астероидов. А Вселенная ведь - это не только Космос! Не путайте, дорогие мои и хорошие! Вселенная - это весь наш мир - весь наш огромный Земной шар!

Как образуется космическая пыль?

Например, космическая пыль может образовываться оттого, когда в Космосе сталкиваются два астероида и при столкновении, происходит процесс их разрушения на мелкие частицы. Многие учёные склоняются и к тому, что её образование связано с тем, когда сгущается межзвездный газ.

Как возникает космическая пыль?

Как она образуется, мы с вами только выяснили, теперь узнаем о том, как она возникает. Как правило, эти пылиночки просто возникают в атмосферах красных звездочек, если вы слышали, такие красные звезды называют ещё - звёздами карликами; возникают, когда на звёздах происходят различные взрывы; когда активно выбрасывается газ из самих ядер галактик; протозвёздная и планетарная туманность - тоже способствует её возникновению, впрочем, как и сама звёздная атмосфера и межзвездные облака.

Какие виды космической пыли можно различать, учитывая её происхождение?

Что касается именно видов, относительно происхождения, то выделим следующие виды:

межзвездный вид пыли, когда на звездах происходит взрыв, то происходит огромный выброс газа и мощный выброс энергии

межгалактический,

межпланетный,

околопланетный: появилась, как "мусор", остатки, после образования иных планет.

Есть виды, которые классифицируются не по происхождению, а по внешним признакам?

    кружочки чёрного цвета, небольшие, блестящие

    кружочки чёрного цвета, но покрупнее размером, имеющие шероховатую поверхность

    кружочки шарики чёрно-белого цвета, кои в своём составе имеют силикатную основу

    кружочки, которые состоят из стекла и металла, они разнородные, и небольшие (20 нм)

    кружочки похожие на порошочек магнетита, они чёрные и похожи на чёрный песок

    пепловидноые и шлакообразные кружочки

    вид, который образовался от столкновения астероидов, комет, метеоритов

Удачный вопрос! Конечно, может. И от столкновения метеоритов тоже. От столкновения любых небесных тел возможно её образование.

Вопрос об образовании и возникновении космической пыли до сих пор является спорным, и разные ученые выдвигают свои точки зрения, но вы можете придерживаться одной или двух близких вам точек зрения в этом вопросе. Например, той, что более понятна.

Ведь даже относительно её видов нет абсолютно точной классификации!

шарики, основа коих является однородной; их оболочка является окисленной;

шарики, основа коих является силикатной; так как они имеют вкрапления газа, то вид их часто похож на шлаки либо на пену;

шарики, основа коих является металлической с ядром из никеля и кобальта; оболочка тоже окисленная;

кружочки наполнение коих является полым.

они могут быть ледяными, а оболочка их состоит из легких элементов; в крупных ледяных частицах есть даже атомы, имеющие магнитные свойства,

кружочки с силикатными и графитными вкраплениями,

кружочки, состоящие из оксидов, в основе коих есть двухатомные окислы:

Космическая пыль до конца не изучена! Очень много открытых вопросов, ибо они являются спорными, но, думаю, основные представления всё-таки у нас теперь имеются!

Многие люди с восторгом любуются прекрасным зрелищем звездного неба, одного из величайших творений природы. В ясном осеннем небе хорошо заметно, как через все небо пролегает слабо светящаяся полоса, называемая Млечным Путем, имеющая неправильные очертания с разной шириной и яркостью. Если рассматривать Млечный Путь, образующий нашу Галактику, в телескоп, то окажется, что эта яркая полоса распадается на множество слабо светящихся звезд, которые для невооруженного глаза сливаются в сплошное сияние. В настоящее время установлено, что Млечный Путь состоит не только из звезд и звездных скоплений, но также из газовых и пылевых облаков .

Космическая пыль возникает во многих космических объектах, где происходит быстрый отток вещества, сопровождаемый охлаждением. Она проявляется по инфракрасному излучению горячих звезд Вольфа-Райе с очень мощным звездным ветром , планетарных туманностей, оболочек сверхновых и новых звезд. Большое количество пыли существует в ядрах многих галактик (например, М82, NGC253), из которых идет интенсивное истечение газа. Наиболее ярко влияние космической пыли проявляется при излучении новой звезды. Через несколько недель после максимума блеска новой в ее спектре появляется сильный избыток излучения в инфракрасном диапазоне, вызванный появлением пыли с температурой около K. Дальнейшая

Ученые Гавайского университета сделали сенсационное открытие — космическая пыль содержит органические вещества , включая и воду, что подтверждает возможность переноса различных форм жизни из одной галактики в другую. Кометы и астероиды, курсирующие в космосе, регулярно приносят в атмосферу планет массы звездной пыли. Таким образом, межзвездная пыль выступает в роли своеобразного «транспорта», который может доставлять воду с органикой на Землю и к прочим планетам Солнечной системы. Возможно, когда-то, поток космической пыли привел к зарождению жизни на Земле. Не исключено, что жизнь на Марсе, существование которой вызывает много споров в ученых кругах, могла возникнуть таким же образом.

Механизм образования воды в структуре космической пыли

В процессе передвижения в космосе поверхность частиц межзвездной пыли облучается , что приводит к образованию соединений воды. Более подробно этот механизм можно описать так: ионы водорода, присутствующие в солнечных вихревых потоках, бомбардируют оболочку космических пылинок, выбивая отдельные атомы из кристаллической структуры силикатного минерала — основного строительного материала межгалактических объектов. В результате данного процесса высвобождается кислород, который входит в реакцию с водородом. Таким образом, формируются молекулы воды, содержащие включения органических веществ.

Сталкиваясь с поверхностью планеты, астероиды, метеориты и кометы приносят на ее поверхность смесь воды и органики

То, что космическая пыль — спутница астероидов, метеоритов и комет, несет в себе молекулы органических соединений углерода, было известно и раньше. Но то, что звездная пыль транспортирует еще и воду, доказано не было. Только сейчас американские ученые впервые обнаружили, что органические вещества переносятся частицами межзвездной пыли совместно с молекулами воды.

Как вода попала на Луну?

Открытие ученых из США может помочь приподнять завесу таинственности над механизмом формирования странных ледовых образований . Несмотря на то, что поверхность Луны полностью обезвожена, на ее теневой стороне при помощи зондирования было обнаружено соединение ОН. Данная находка свидетельствует в пользу возможного присутствия воды в недрах Луны.

Обратная сторона Луны сплошь покрыта льдами. Возможно, именно с космической пылью попали на ее поверхность молекулы воды много биллионов лет тому назад

Со времен эры луноходов Apollo в исследовании Луны, когда на Землю были доставлены пробы лунного грунта, ученые пришли к выводу, что солнечный ветер вызывает изменения в химическом составе звездной пыли, покрывающей поверхности планет. О возможности образования молекул воды в толще космической пылина Луне еще тогда шли дебаты, однако доступные на тот момент аналитические методы исследований были не в состоянии либо доказать, либо опровергнуть данную гипотезу.

Космическая пыль — носитель жизненных форм

За счет того, что вода образовывается в совсем небольшом объеме и локализуется в тонкой оболочке на поверхности космической пыли , только сейчас стало возможным увидеть ее при помощи электронного микроскопа высокого разрешения. Ученые считают, что подобный механизм перемещения воды с молекулами органических соединений возможен и в других галактиках, где вращается вокруг «родительской» звезды. В своих дальнейших исследованиях ученые предполагают более подробно идентифицировать, какие неорганические и органические вещества на основе углерода присутствуют в структуре звездной пыли.

Интересно знать! Экзопланета — это такая планета, которая находится вне Солнечной системы и вращается вокруг звезды. На данный момент в нашей галактике визуально обнаружено порядка 1000 экзопланет, образующих около 800 планетных систем. Однако непрямые методы детектирования свидетельствуют о существовании 100 млрд. экзопланет, из которых 5-10 млрд. обладают параметрами, схожими с Землей, то есть являются . Значительный вклад в миссию поиска планетарных групп, подобных Солнечной системе, сделал астрономический спутник-телескоп Кеплер, запущенный в космос в 2009 году, совместно с программой «Охотники за планетами» (Planet hunters).

Как могла возникнуть жизнь на Земле?

Весьма вероятно, что кометы, путешествующие в пространстве с высокой скоростью, способны при столкновении с планетой создать достаточно энергии, чтобы из компонентов льда начался синтез более сложных органических соединений, в том числе молекул аминокислот. Аналогичный эффект возникает при столкновении метеорита с ледяной поверхностью планеты. Ударная волна создает тепло, которое запускает процесс формирования аминокислот из отдельных молекул космической пыли, обработанной солнечным ветром.

Интересно знать! Кометы состоят из больших глыб льда, сформированных путем конденсации водяного пара на начальном этапе создания Солнечной системы, приблизительно около 4.5 биллионов лет тому назад. В своей структуре кометы содержат углекислый газ, воду, аммиак, метанол. Эти вещества при столкновении комет с Землей, на ранней стадии ее развития, могли продуцировать достаточное количество энергии для производства аминокислот — строительных белков, необходимых для развития жизни.

Компьютерное моделирование продемонстрировало, что ледяные кометы, разбившиеся о поверхность Земли миллиарды лет тому назад, возможно, содержали пребиотические смеси и простейшие аминокислоты типа глицина, из которых, впоследствии, и зародилась жизнь на Земле.

Количество энергии, высвобождающейся при столкновении небесного тела и планеты, достаточно для запуска процесса формирования аминокислот

Ученые обнаружили, что ледяные тела с идентичными органическими соединениями, присущими кометам, можно найти внутри Солнечной системы. Например, Энцелад — один из спутников Сатурна, или Европа — спутник Юпитера, содержат в своей оболочке органические вещества , смешанные со льдом. Гипотетически, любая бомбардировка спутников метеоритами, астероидами или кометами может привести к возникновению жизни на данных планетах.

Вконтакте

Откуда же берется космическая пыль? Наша планета окружена плотной воздушной оболочкой – атмосферой. В состав атмосферы, кроме известных всем газов, входят ещё и твёрдые частички – пыль.

В основном она состоит из частиц почвы, поднимающихся вверх под действием ветра. При извержении вулканов часто наблюдаются мощные пылевые облака. Над большими городами висят целые «пылевые шапки», достигающие высоты в 2-3 км. Число пылинок в одном куб. см воздуха в городах достигает 100 тысяч штук, в то время как в чистом горном воздухе их содержится всего несколько сотен. Однако пыль земного происхождения поднимается на сравнительно небольшие высоты – до 10 км. Вулканическая пыль может достигать высоты 40-50 км.

Происхождение космической пыли

Установлено присутствие пылевых облаков на высоте, значительно превышающей 100 км. Это так называемые «серебристые облака», состоящие из космической пыли.

Происхождение космической пыли чрезвычайно разнообразно: в неё входят и остатки распавшихся комет, и частицы вещества, выброшенного Солнцем и принесённого к нам силой светового давления.

Естественно, что под действием земного притяжения значительная часть этих космических пылинок медленно оседает на землю. Присутствие такой космической пыли было обнаружено на высоких снеговых вершинах.

Метеориты

Кроме такой, медленно оседающей космической пыли, в пределы нашей атмосферы ежедневно врываются сотни миллионов метеоров – то, что мы называем «падающими звёздами». Летя с космической скоростью в сотни километров в секунду, они сгорают от трения о частицы воздуха, не успев долететь до поверхности земли. Продукты их сгорания тоже оседают на землю.

Впрочем, среди метеоров есть и исключительно большие экземпляры, долетающие до поверхности земли. Так, известно падение большого Тунгусского метеорита в 5 часов утра 30 июня 1908 года, сопровождавшееся рядом сейсмических явлений, отмеченных даже в Вашингтоне (в 9 тысячах км от места падения) и свидетельствующих о мощности взрыва при падении метеорита. Профессор Кулик, с исключительной смелостью обследовавший место падения метеорита, нашёл чащу бурелома, окружающую место падения в радиусе сотен километров. Метеорита к сожалению, ему найти не удалось. Сотрудник Британского музея Кирпатрик в 1932 году совершил специальную поездку в СССР, но к месту падения метеорита даже не добрался. Впрочем, он подтвердил предположение профессора Кулика, оценившего массу упавшего метеорита в 100-120 тонн.

Облако космической пыли

Интересна гипотеза академика В. И. Вернадского, считавшего возможным падение не метеорита, а огромного облака космической пыли, шедшего с колоссальной скоростью.

Свою гипотезу академик Вернадский подтверждал появлением в эти дни большого количества светящихся облаков, двигавшихся на большой высоте со скоростью 300-350 км в час. Этой гипотезой можно было бы объяснить и то, что деревья, окружающие метеоритный кратер, остались стоять, в то время как расположенные далее были повалены взрывной волной.

Помимо Тунгусского метеорита известен ещё целый ряд кратеров метеоритного происхождения. Первым из таких обследованных кратеров можно назвать Аризонский кратер в «Каньоне Дьявола». Интересно, что близ него были найдены не только осколки железного метеорита, но и маленькие алмазы, образовавшиеся из углерода от большой температуры и давления при падении и взрыве метеорита.
Кроме указанных кратеров, свидетельствующих о падении огромных метеоритов весом в десятки тонн, существуют ещё и более мелкие кратеры: в Австралии, на острове Эзель и ряд других.

Помимо больших метеоритов, ежегодно выпадает довольно много более мелких – весом от 10-12 грамм до 2-3 килограмм.

Если бы Земля не была защищена плотной атмосферой, мы ежесекундно подвергались бы бомбардировке мельчайших космических частиц, несущихся со скоростью, превосходящей скорость пули.