Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Всасывание жиров. Переваривание жиров идет в кишечнике Чем отличается особенности всасывания продуктов переваривания жиров

В суточном рационе обычно содержится 80- 100 г жиров.

Расщепление жиров в желудочно-кишечном тракте. Слюна не содержит расщепляющих жиры ферментов. Следовательно, в полости рта жиры не подвергаются никаким изменениям. У взрослых людей жиры проходят через желудок также без особых изменений, поскольку содержащаяся в небольшом количестве в желудочном соке взрослого человека и млекопитающих липаза малоактивна. Величина pH желудочного сока около 1,5, а оптимальное значение pH для желудочной липазы находится в пределах 5,5-7,5. Кроме того, липаза может активно гидролизовать только предварительно эмульгированные жиры, в желудке же отсутствуют условия для эмульгирования жиров.

Переваривание жиров в полости желудка играет важную роль в процессе пищеварения у детей, особенно грудного возраста. Известно, что pH желудочного сока у детей грудного возраста около 5,0, что способствует перевариванию эмульгированного жира молока желудочной липазой. К тому же есть основания полагать, что при длительном употреблении молока в качестве основного продукта питания у детей грудного возраста наблюдается адаптивное усиление синтеза желудочной липазы.

Хотя в желудке взрослого человека не происходит заметного переваривания жиров пищи, все же в желудке отмечается частичное разрушение липопротеидных комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Кроме того, незначительное расщепление жиров в желудке приводит к появлению свободных жирных кислот, которые, поступая в кишечник, способствуют эмульгированию там жиров.

После того как химус (жидкое или полужидкое содержимое желудка или кишечника, состоящее из частично переваренной пищи, желудочного и кишечного соков, секретов желёз, жёлчи, слущённых эпителиальных клеток и микроорганизмов) попадает в двенадцатиперстную кишку, здесь прежде всего происходит нейтрализация соляной кислоты желудочного сока, попавшей в кишечник с пищей, бикарбонатами, содержащимися в панкреатическом и кишечном соках. Выделяющиеся при разложении бикарбонатов пузырьки углекислого газа способствуют хорошему перемешиванию пищевой кашицы с пищеварительными соками. Одновременно начинается эмульгирование жира. В процессе эмульгирования крупные капли жира превращаются в мелкие, что значительно увеличивает их суммарную поверхность. Ферменты сока поджелудочной железы – липазы, являясь белками, не могут проникать внутрь капель жира и расщепляют только молекулы жира, находящиеся на поверхности. Поэтому увеличение общей поверхности капель жира за счет эмульгирования значительно повышает эффективность действия этого фермента. Наиболее мощное эмульгирующее действие на жиры, несомненно, оказывают соли желчных кислот , попадающие в двенадцатиперстную кишку с желчью в виде натриевых солей, большая часть которых конъюгирована с глицином или таурином. Желчные кислоты представляют собой основной конечный продукт обмена холестерина. Во всех реакциях образования из холестерина желчных кислот принимает участие большое количество ферментов и коферментов печени.

Считается, что только комбинация: соль желчной кислоты + ненасыщенная жирная кислота + моноглицерид способна дать необходимую степень эмульгирования жира. Соли желчных кислот резко уменьшают поверхностное натяжение на поверхности раздела жир/вода, благодаря чему они не только облегчают эмульгирование, но и стабилизируют уже образовавшуюся эмульсию.

Желчные кислоты выполняют также важную роль в качестве своеобразного активатора панкреатической липазы, под влиянием которой происходит расщепление жира в кишечнике. Вырабатываемая в поджелудочной железе липаза расщепляет триглицериды, находящиеся в эмульгированном состоянии. Считают, что активирующее влияние желчных кислот на липазу выражается в смещении оптимума действия данного фермента с pH 8,0 до 6,0, т. е. до той величины pH, которая более постоянно поддерживается в двенадцатиперстной кишке в ходе переваривания жирной пищи.

Необходимо отметить, что в расщеплении жиров участвует также кишечная липаза, однако активность ее невысока. К тому, же эта липаза катализирует гидролитическое расщепление моноглицеридов и не действует на ди- и триглицериды. Таким образом, практически основными продуктами, образующимися в кишечнике при расщеплении пищевых жиров, являются жирные кислоты, моноглицериды и глицерин.

Продукты расщепления жира всасываются слизистой тонкого кишечника.

Всасывание жиров в кишечнике . Всасывание происходит в проксимальной части тонкого кишечника. Тонко эмульгированные жиры (величина жировых капелек эмульсии не должна превышать 0,5 мкм) частично могут всасываться через стенку кишечника без предварительного гидролиза. Однако основная часть жира всасывается лишь после расщепления его панкреатической липазой на жирные кислоты, моноглицериды и глицерин.

1) Жирные кислоты с короткой углеродной цепью (менее 10 С-атомов) и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда - в печень, минуя какие-либо превращения в кишечной стенке.

2) Сложнее дело обстоит с жирными кислотами с длинной углеродной цепью и моноглицеридами. Всасывание этих соединений происходит при участии желчи и главным образом желчных кислот, входящих в ее состав. Жирные кислоты с длинной цепью и моноглицериды в просвете кишечника образуют с этими соединениями устойчивые в водной среде мицеллы (мицеллярный раствор). Структура этих мицелл такова, что их гидрофобное ядро (жирные кислоты, глицериды и др.) оказывается окруженным снаружи гидрофильной оболочкой из желчных кислот и фосфолипидов. Мицеллы примерно в 100 раз меньше самых мелких эмульгированных жировых капель. В составе мицелл высшие жирные кислоты и моноглицериды переносятся с места гидролиза жиров к всасывающей поверхности кишечного эпителия. Происходит постоянная циркуляция желчных кислот между печенью и кишечником. Этот процесс получил название печеночно-кишечной (энтерогепатической) циркуляции .

Установлено, что у человека общий пул желчных кислот - примерно 2,8-3,5 г; при этом они совершают 5-6 оборотов в сутки.

Освободившиеся жирные кислоты в клетках стенки тонкого кишечника вновь соединяются с глицерином, в результате чего вновь образуется молекула жира. Но в этот процесс вступают только жирные кислоты, входящие в состав жира человека. Таким образом, синтезируется человеческий жир. Такая перестройка пищевых жирных кислот в собственные жиры называется ресинтезом жира.

Ресинтез жиров в стенке кишечника . В стенке кишечника синтезируются жиры, в значительной степени специфичные для данного вида животного и отличающиеся по своей природе от пищевого жира. В известной мере это обеспечивается тем, что в синтезе триглицеридов (а также фосфолипидов) в кишечной стенке принимают участие наряду с экзогенными и эндогенные жирные кислоты. Однако способность к осуществлению в стенке кишечника синтеза жира, специфичного для данного вида животного, все же ограничена. А. Н. Лебедевым показано, что при скармливании животному, особенно предварительно голодавшему, больших количеств чужеродного жира (например, льняного масла или верблюжьего жира) часть его обнаруживается в жировых тканях животного в неизмененном виде. Жировые депо скорее всего являются единственной тканью, где могут откладываться чужеродные жиры. Липиды, входящие в состав протоплазмы клеток других органов и тканей, отличаются высокой специфичностью, их состав и свойства мало зависят от пищевых жиров.

Механизм ресинтеза триглицеридов в клетках стенки кишечника в общих чертах сводится к следующему: первоначально из жирных кислот образуется их активная форма - ацил-КоА (группа ферментов из класса оксидоредуктаз, которые катализируют реакции переноса протона (дегидрогенизация) от субстрата - ацил-КоА жирной кислоты на электрон-переносящий флавопротеин (FAD), участвуют в процессе β-окисления), после чего происходит ацилирование моноглицеридов с образованием сначала диглицеридов, а затем триглицеридов:

Таким образом, в клетках кишечного эпителия высших животных моноглицериды, образующиеся в кишечнике при переваривании пищи, могут ацилироваться непосредственно, без промежуточных стадий.

Однако в эпителиальных клетках тонкого кишечника содержатся ферменты - моноглицеридлипаза, расщепляющая моноглицерид на глицерин и жирную кислоту, и глицеролкиназа, способная превращать глицерин (образовавшийся из моноглицерида или всосавшийся из кишечника) в глицерол-3-фосфат. Последний, взаимодействуя с активной формой жирной кислоты - ацил-КоА, дает фосфатидную кислоту, которая затем используется для ресинтеза триглицеридов и особенно глицерофосфолипидов.

Ресинтез жиров в слизистой тонкого кишечника

Всасывание продуктов расщепления жиров

Всасывание продуктов расщепления жиров происходит в тонком кишечнике и определяется водорастворимостью или водонерастворимостью образовавшихся продуктов расщепления жиров. Водорастворимые вещества (глицерин, холин, Н 3 РО 4) легко всасывается по градиенту концентрации.

Водонерастворимые вещества (бета-МАГ, холестерин, длинноцепочечные жирные кислоты) не могут всасываться самостоятельно. В их всасывании участвуют жёлчные кислоты, которые образуют в просвете кишечника особые сферические водорастворимые структуры – мицеллы, в которые встраиваются гидрофобные жирные кислоты, холестерин. В процессе всасывания мицеллы распадаются, всœе водонерастворимые вещества подвергаются всасыванию. Жёлчные кислоты частично возвращаются в просвет кишечника, но в основном проходят процесс гемато-гепато-энтеральной циркуляции: всасываются, с током крови возвращаются в печень и повторно выделяются в состав жёлчи в просвет кишечника. Вследствие многократной циркуляции жёлчных кислот их небольшого количества (4 - 6 г) оказывается достаточным для всасывания большого количества гидрофобных продуктов. 10% короткоцепочечных жирных кислот может всасываться в виде тончайшей эмульсии путём пиноцитоза.

Ресинтез – синтез липидов, характерных для организма человека, из компонентов пищевых жиров. Недостающие жирные кислоты, спирты, необходимые для ресинтеза, могут синтезироваться в клетках слизистой кишечника (энтероцитах) и выделяться в составе жёлчи. Ресинтез триацилглицеринов происходит из активной формы глицерина и жирных кислот последовательно через стадию моноацилглицерина, диацилглицерина. Ресинтез глицерофосфолипидов происходит из фосфатидной кислоты, фосфохолина и диацилглицеринов. Ресинтезу подвергаются и другие виды липидов.

Главная особенность переваривания жиров в раннем детском возрасте состоит по сути в том, что примерно половина жиров расщепляется в желудке. Данная особенность обусловлена следующими обстоятельствами:

  1. жиры молока находится в эмульгированном состоянии
  2. при грудном вскармливании в переваривании жиров участвует липаза грудного молока
  3. в процессе сосания у грудного ребёнка вырабатывается лингвальная липаза, которая оказывает эффект в желудке
  4. активно вырабатывается желудочная липаза с оптимумом рН около 5,0
  5. у детей в желудке менее кислая среда, приближенная к оптимуму рН для липаз
  6. активность панкреатической липазы у детей снижена
  7. в детском возрасте менее активен синтез жёлчных кислот, повышена их потеря через кишечник и замедлена циркуляция.

Всасывание жиров у детей происходит с большей скоростью, чем у взрослых в связи с высокой проницаемостью слизистой кишечника.

О процессе переваривания и всасывания пищи

Ключ к пониманию обмена веществ

Переваривание это совокупность механических и биохимических процессов, благодаря которым поглощаемая человеком пища преобразуется в вещества, которые могут быть усвоены организмом.

После того, как пища пережевана и проглочена, она попадает в желудок, где подвергается различным видоизменениям, позволяющим дальнейшее всасывание.

Процесс пищеварения продолжается в тонком кишечнике под воздействием различных пищевых ферментов. Там происходит превращение углеводов в глюкозу , расщепление липидов на жирные кислоты и моноглицериды, а белков – на аминокислоты.

Эти вещества, всасываясь через стенки кишечника, попадают в кровь.

Между тем, несмотря на некоторые общепринятые взгляды, всасывание этих макронутриентов отнюдь не длится часами и не растягивается на все шесть с половиной метров тонкой кишки. Очень важно знать, что усвоение углеводов и липидов на 80%, а белков – на 50% — осуществляется на протяжении первых 70-ти сантиметров тонкого кишечника.

Некоторые полагают, что углеводы, жиры и белки всегда усваиваются полностью. Многие пациенты думают – и диетологи им в этом не препятствуют — что абсолютно все присутствующие на их тарелке (и, конечно, подсчитанные) калории поступят в кровь сразу после расщепления соответствующей пищи. На самом деле, все обстоит иначе.

Всасывание углеводов

Расщепление углеводов осуществляется под действием пищеварительных ферментов, в особенности амилаз слюнной и поджелудочной желез. А гидролиз углеводов, то есть превращение в усваиваемую организмом глюкозу, напрямую зависит от их гликемического индекса.

Гликемический индекс углевода определяет способность углевода повышать гликемию, то есть количество глюкозы в крови. Другими словами, ГИ выражает способность углевода к гидролизу, то есть расщеплению до глюкозы.

Итак, гликемический индекс (ГИ) измеряет долю глюкозы, которая будет получена из данного углевода в процессе его переработки организмом и, следовательно, попадет в кровь.

Если гликемический индекс (ГИ) глюкозы равен 100, это значит, что при попадании в тонкую кишку она всосется через стенки кишечника на 100 %.

Если ГИ белого хлеба равен 70, это означает, что содержащийся в нём углевод (крахмал) на 70% гидролизуется и пройдет через стенки кишечника в форме глюкозы.

По этому же принципу, если ГИ чечевицы равен 30, то можно полагать, что содержащийся в ней крахмал лишь на 30% будет усвоен организмом в виде глюкозы.

Таким образом, при равном калорийном показателе поглощаемых нами углеводов, количество полученной при их расщеплении и поступающей в кровь глюкозы может значительно варьироваться, в зависимости от ГИ углевода.

Другими словами, гликемический индекс содержащего углеводы продукта выражает его глюкозную биодоступность.

Для облегчения понимания этого феномена раскроем его, используя термин традиционной диетологии, то есть «калории».

Из этой таблицы видно, что после усвоения жареного картофеля в организме высвобождается в три раза больше калорий, чем после усвоения чечевицы, при равных порциях углеводов.

И наоборот, при равных порциях, чечевица после расщеплении высвобождает в три раза меньше «калорий», чем картофель.

Кроме того, опытным путем было выявлено, что употребление сахара (в разумных пределах) в конце приёма пищи если и влияет на гликемический результат приёма пищи, то очень незначительно. Всасывание сахара (ГИ 70) будет снижено в зависимости от того, насколько разнообразна была пища и какое количество пищевых волокон и протеинов она содержала. Совсем по-другому дело обстоит, если сахар поступает в организм натощак, например, в виде сладких газированных напитков (кока-кола). В этом случае углевод всасывается почти полностью.

Этот момент чрезвычайно важен!

Он является одним из основных принципов Метода Монтиньяка и позволяет понять, как можно снизить вес, не уменьшая при этом количества потребляемой пищи, а лишь научившись правильно выбирать продукты.

Этот пункт важен ещё и потому, что заставляет пересмотреть слепое и наивное убеждение традиционной диетологии в том, что все калории, поглощаемые нами, полностью усваиваются организмом.

Многие нутриционисты, пользующиеся понятием гликемического индекса, ошибаются, полагая, что ГИ выражает лишь величину пика гликемии. Так что вся польза продукта с низким ГИ сводится, в их понимании, к тому, что он помогает избежать резкого повышения уровня сахара в крови, замедляя всасывание глюкозы. Таким образом, принцип гликемического индекса углеводов ошибочно связывается с понятием о «медленных» и «быстрых сахарах», которое многие авторы, в частности, профессор Ж. Слама, считают неверным.

Согласно объяснению Дженкинса, приведенному более подробно в специальном разделе сайта, гликемический индекс углеводного продукта соответствует площади треугольника, который образует на графике кривая гипергликемии, возникшей в результате поступления сахара. Другими словами, ГИ углевода выражает количество глюкозы, вырабатывающейся при его расщеплении и поступающей в кровь через стенки кишечника. Чем ниже , тем меньше глюкозы высвободится в кровь при его переваривании.

В заключение скажем, что гликемический индекс углеводного продукта, помимо гликемии, измеряет степень всасываемости углевода, то есть его биодоступность. Так что повышение уровня гликемии лишь свидетельствует о той доле углевода, которая поступила в кровь человека в виде глюкозы после переваривания продукта.

Всасывание липидов (жиров)

Тема липидов традиционно нелюбима диетологами. Отвращение к жирам вызвано тем, что они высококалорийны: 9 килокалорий на грамм.

Несмотря на укоренившиеся стереотипы, не все жиры, попадающие к нам в тарелку, полностью усваиваются в процессе пищеварения. Всасывание их зависит от нижеперечисленных параметров.

На усвоение влияет их происхождение и химический состав:

Насыщенные жирные кислоты (сливочное масло, говяжий жир, баранина, свинина, пальмовое масло…), а также транс-жиры (гидрогенезированный маргарин…) имеют тенденцию откладываться в жировые запасы, а не сразу сжигаться в процессе энергетического обмена.

Мононенасыщенные жирные кислоты (оливковое масло, жир утки или гуся) преимущественно используются непосредственно после всасывания. Кроме того, они способствуют снижению гликемии, что уменьшает выработку инсулина и тем самым ограничивает формирование жировых запасов.

Полиненасыщенные жирные кислоты, в особенности Омега-3 (рыбий жир, репсовое масло, льняное масло…), всегда расходуются непосредственно после всасывания, в частности, за счёт повышения пищевого термогенеза — энергозатрат организма на переваривание пищи.

Кроме того, они стимулируют липолиз, (расщепление и сжигание жировых отложений), способствуя тем самым похудению.

Следовательно, при равном калорийном составе разные типы жирных кислот имеют разное, иногда даже противоположное, влияние на метаболизм.

Всасывание жиров зависит от расположения жирных кислот относительно молекулы глицерина:

95 – 98% поглощаемых с пищей жиров имеют структуру триглицеридов. Их ежедневная норма для человека в среднем составляет 100 – 150 гр.

С точки зрения химии, триглицериды представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот . Различают три возможных варианта расположения жирных кислот относительно молекулы глицерина.

Доля всасывания жирной кислоты зависит от того, какую позицию она занимает. Важно знать, что только те жирные кислоты, которые занимают позицию Р2, хорошо всасываются..

Это связано с тем, что пищевые ферменты, расщепляющие липиды (липазы), имеют разную степень воздействия на жирные кислоты в зависимости от расположения последних.

Это означает, что не все поступившие с кислоты полностью всасываются в организме, как ошибочно полагают многие диетологи. Они могут частично или полностью не усвоиться в тонком кишечнике и быть выведены из организма.

Например, в сливочном масле, 80% жирных кислот (насыщенных) находятся в позиции Р2, то есть они полностью всасываемы. Это же относится к жирам, входящим в состав молока и всех не проходящих процесс ферментации молочных продуктов.

С другой стороны, жирные кислоты присутствующие в зрелых сырах (особенно сырах длительной выдержки), хоть и являются насыщенными, находятся все же в позициях Р1 и Р3, что делает их менее абсорбируемыми.

Кроме того, в большинстве своём сыры богаты кальцием (особенно твердые сыры, например, швейцарский грюйер…). Кальций соединяется с жирными кислотами, образуя «мыла», которые не всасываются и выводятся из организма.

Из вышесказанного можно заключить, что степень усвоения организмом жирных кислот , входящих в состав молочных продуктов, обусловливается химическими факторами этих продуктов (ферментация, содержание кальция…). От этих факторов зависит не только количество высвобождающейся при переваривании энергии, но и степень риска для сердечно-сосудистой системы.

Такое наблюдение было подтверждено специализированными исследованиями, выявившими взаимосвязь между употреблением в пищу молочных продуктов , не проходящих ферментацию (молоко, сливочное масло, сливки…), и возникновением коронарных болезней.

Было также установлено, что при количественно равном употреблении в пищу молочных продуктов , прошедших ферментацию (сыров), риск развития сердечно-сосудистых заболеваний неодинаков от страны к стране.

Довольно интересно сравнение между жителями Финляндии и Швейцарии. Было отмечено, что смертность от сердечно-сосудистых недугов в Швейцарии в два раза ниже, чем в Финляндии, при примерно равном потреблении молочных продуктов на человека.

Одним из основных объяснений этого является то, что швейцарцы, в отличие от финнов, потребляют большую часть молочных продуктов в виде ферментированных сыров.

Ещё более поразительно сравнение между Финляндией и Францией.

При том, что французы едят в два раза больше молочных продуктов, уровень смертности от сердечно-сосудистых заболеваний во Франции в два с половиной раза ниже.

Этому есть несколько объяснений, одно из которых следующее: французы едят сыры, которые не просто ферментированы, а ещё и выдержаны.

Вызревание сыра способствует переходу входящих в него жирных кислот в положение P1 и P3, что свидетельствует о слабой их всасываемости.

На абсорбцию липидов также влияет количество пищевых волокон.

Присутствие в пище одновременно с жирами пищевых волокон, в частности, растворимых, влияет на усвоение жирных кислот . Например, употребление яблок, богатых пектином, и бобовых, источника камеди, может понизить гиперхолестеринемию, а также содействовать профилактике лишнего веса, уменьшая количество усваиваемых организмом калорий.

Всасывание протеинов

Различные параметры оказывают влияние на абсорбцию белков:

Происхождение белка

Животные белки почти на 100% всасываются в кишечнике. Таким образом, они полностью высвобождаются для использования организмом.

Процент же всасывания растительных белков, за исключением сои, намного ниже:

— чечевица — 52%

— турецкий горох (нут) — 70%

— пшеница — 36%

Состав белка

Известно, что протеины состоят из разных аминокислот. Недостаток одной или нескольких аминокислот может стать ограничивающим фактором, препятствующим правильному использованию остальных.

Так что иногда поглощенные белки после всасывания оказываются либо неработоспособными, либо имеют слабую активность, не соответствующую их количеству.

Заключение: питательные вещества, поступающие с пищей, не обладают полной стопроцентной усвояемостью. Степень их всасывания может существенно меняться, в зависимости от физико-химического состава самого продукта и поглощаемых одновременно с ним других продуктов.

Важно учитывать это, предпринимая меры по снижению веса или профилактике сердечно-сосудистых заболеваний.

Всасыванием называется процесс поступления в кровь и лимфу различных веществ из пищеварительной системы . Кишечный эпителий является важнейшим барьером между внешней средой, роль которой выполняет полость кишечника, и внутренней средой организма (кровь, лимфа), куда поступают питательные вещества.
Всасывание представляет собой сложный процесс и обеспечивается различными механизмами: фильтрацией , связанной с разностью гидростатического давления в средах, разделенных полупроницаемой мембраной; диффузией веществ по градиенту концентрации и осмосом , требующим затрат энергии, поскольку он происходит против градиента концентрации. Количество всасывающихся веществ не зависит от потребностей организма (за исключением меди и железа), они пропорционально потреблению пищи. Кроме того, оболочка органов пищеварения обладает способностью избирательно всасывать одни вещества и ограничивать всасывание других. Способностью к всасыванию обладает эпителий слизистых оболочек всего пищеварительного тракта. Например, слизистая полости рта может всасывать в небольшом количестве эфирные масла, на чем основано применение некоторых лекарств. В незначительной степени способна к всасыванию и слизистая оболочка желудка. Вода, алкоголь, моносахариды, минеральные соли могут проходить через слизистую желудка в обоих направлениях.
Наиболее интенсивно процесс всасывания осуществляется в тонком кишечнике, особенно в тощей и подвздошной кишке, что определяется их большой поверхностью, во много раз превышающей поверхность тела человека. Поверхность кишечника увеличивается наличием ворсинок, внутри которых находятся гладкие мышечные волокна и хорошо развитая кровеносная и лимфатическая система. Интенсивность всасывания в тонком кишечнике составляет 2-3 литра в час.
Углеводы всасываются в кровь в виде глюкозы , хотя могут всасываться и другие гексозы (галактоза, фруктоза). Всасывание происходит преимущественно в 12-перстной кишке и верхней части тощей кишки, но частично может осуществляться в желудке и толстом кишечнике (см. рис. Переваривание и всасывание углеводов).

Белки всасываются в кровь в виде аминокислот и в небольшом количестве в виде полипептидов через слизистые оболочки 12-перстной кишки и тощей кишки. Некоторые аминокислоты могут всасываться в желудке и проксимальной части толстого кишечника (см.рис. Переваривание и всасывание белков).


Жиры всасываются большей частью в лимфу в виде жирных кислот и глицерина только в верхней части тонкого кишечника. Жирные кислоты нерастворимы в воде, поэтому их всасывание, а также всасывание холестерина и других липоидов происходит лишь при наличии желчи.(см.рис Переваривание и всасывание липидов)


Вода и некоторые электролиты проходят через мембраны слизистой оболочки пищеварительного канала в обоих направлениях. Вода проходит путем диффузии, и в ее всасывании большую роль играют гормональные факторы. Наиболее интенсивное всасывание происходит в толстом кишечнике. Растворенные в воде соли натрия, калия и кальция всасываются преимущественно в тонком кишечнике по механизму активного транспорта против градиента концентрации. (см.рис Механизмы всасывания воды).

В желудочно-кишечном тракте (ЖКТ) отличается от переваривания белков и углеводов тем, что для них требуется предварительный процесс эмульгирования - разбиения на мельчайшие капельки. Некоторая часть жира в виде самых мелких капелек вообще может далее не расщепляться, а всасываться прямо в этом виде, т.е. в виде исходного жира, полученного с пищей.

В результате химического расщепления ферментом липазой эмулльгированных жиров получаются глицерин и жирные кислоты. Они, а также мельчайши капли нерасщеплённого эмульгированного жира, всасываются в верхнем отделе тонкого кишечника в начальных 100 см. В норме всасывается 98% пищевых липидов.

1. Короткие жирные кислоты (не более 10 атомов углерода) всасываются и переходят в кровь без каких-либо особенных механизмов. Этот процесс важен для грудных детей, т.к. молоко содержит в основном коротко- и среднецепочечные жирные кислоты. Глицерол тоже всасывается напрямую.

2. Другие продукты переваривания (жирные кислоты, холестерол, моноацилглицеролы) образуют с желчными кислотами мицеллы с гидрофильной поверхностью и гидрофобным ядром. Их размеры в 100 раз меньше самых мелких эмульгированных жировых капелек. Через водную фазу мицеллы мигрируют к щеточной каемке слизистой оболочки. Здесь мицеллы распадаются и липидные компоненты проникают внутрь клетки, после чего транспортируются в эндоплазматический ретикулум.

Желчные кислоты частично также могут попадать в клетки и далее в кровь воротной вены, однако большая их часть остается в химусе и достигает подвздошной кишки, где всасывается при помощи активного транспорта.

Ресинтез липидов в энтероцитах

Ресинтез липидов – это повторный синтез липидов в стенке кишечника из поступающих сюда экзогенных жирных кислот и глицерина, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани.

Поступившая в энтероцит жирная кислота обязательно активируется через присоединение коэнзима А. Образовавшийся ацил-SКоА участвует в реакциях синтеза эфиров холестерола, триацилглицеролов и фосфолипидов.

Триацилглицеролы (ТАГ) представляют собой сложные эфиры трехатомного спирта глицерола (глицерина) и высших жирных кислот. Триацилглицеролы, содержащие остатки одинаковых жирных кислот, называются простыми нейтральными жирами, разные остатки – смешанными жирами. Твердые триацилглицеролы называют жирами, жидкие – маслами. В составе твердых жиров преобладают остатки насыщенных высших жирных кислот, в составе жидких жиров – остатки ненасыщенных кислот. В организме животных и человека (жировой ткани, мембранах) присутствуют смешанные жиры с преобладанием ацильных остатков ненасыщенных жирных кислот.

Активация жирной кислоты

Реакция активации жирной кислоты

Ресинтез эфиров холестерола

Холестерол этерифицируется с использованием ацил-S-КоА и фермента ацил-КоА:холестерол-ацилтрансферазы (АХАТ). Реэтерификация холестерола напрямую влияет на его всасывание в кровь. В настоящее время ищутся возможности подавления этой реакции для снижения концентрации ХС в крови.

Ресинтез ХС

Реакция ресинтеза холестерола

Ресинтез триацилглицеролов

Для ресинтеза ТАГ есть два пути:

Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ.

Ресинтез ТАГ

Моноацилглицеридный путь образования ТАГ

Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется и глицерол в энтероцитах не задерживается, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы, так как пищевой глицерол быстро покидает энтероциты и уходит в кровь. Здесь можно выделить следующие реакции:

Образование глицерол-3-фосфата из глюкозы.

Превращение глицерол-3-фосфата в фосфатидную кислоту.

Превращение фосфатидной кислоты в 1,2-ДАГ.

Синтез ТАГ.

Ресинтез ТАГ

Глицеролфосфатный путь образования ТАГ

Ресинтез фосфолипидов

Фосфолипиды синтезируются также как и в остальных клетках организма. Для этого есть два способа. Первый – с использованием 1,2-ДАГ и активных форм холина и этаноламина для синтеза фосфатидилхолина или фосфатидилэтаноламина. Второй путь – через синтезируемую in situ фосфатидную кислоту (см "Cинтез фосфолипидов").

S09-05-resintez-shema

Общая схема ресинтеза фосфолипидов

После ресинтеза фосфолипиды, триацилглицеролы, холестерол и его эфиры упаковываются в особые транспортные формы липидов – липопротеины и только в такой форме они способны покинуть энтероцит. В кишечнике формируются два вида липопротеинов – хиломикроны и липопротеины высокой плотности.

Любое нарушение внешнего обмена липидов (проблемы переваривания или всасывания) проявляется увеличением содержания жира в кале – развивается стеаторея.

Причины нарушений переваривания липидов

1. Снижение желчеобразования в результате недостаточного синтеза желчных кислот и фосфолипидов при болезнях печени, гиповитаминозах.

2. Снижение желчевыделения (обтурационная желтуха, билиарный цирроз, желчнокаменная болезнь). У детей часто причиной может быть перегиб желчного пузыря, который сохраняется и во взрослом состоянии.

3. Снижение переваривания при недостатке панкреатической липазы, который возникает при заболеваниях поджелудочной железы (острый и хронический панкреатит, острый некроз, склероз). Может возникать относительная недостаточность фермента при сниженном выделении желчи.

4. Избыток в пище катионов кальция и магния, которые связывают жирные кислоты, переводят их в нерастворимое состояние и препятствуют их всасыванию. Эти ионы также связывают желчные кислоты, нарушая их работу.

5. Снижение всасывания при повреждении стенки кишечника токсинами, антибиотиками (неомицин, хлортетрациклин).

6. Недостаточность синтеза пищеварительных ферментов и ферментов ресинтеза липидов в энтероцитах при белковой и витаминной недостаточности.

Нарушение желчевыделения

Нарушение желчеобразования и желчевыделения чаще всего связаны с хроническим избытком ХС в организме вообще и в желчи в частности, так как желчь является единственным способом его выведения.

Избыток ХС в печени возникает при увеличении количества исходного материала для его синтеза (ацетил-S#КоА) и при недостаточном синтезе желчных кислот из-за снижения активности 7α-гидроксилазы (гиповитаминозы С и РР).

Нарушение желчеобразования

Причины нарушения формирования желчи и возникновения холелитиаза

Избыток ХС в желчи может быть абсолютным в результате избыточного синтеза и потребления или относительным. Так как соотношение желчных кислот, фосфолипидов и холестерола должно составлять 65:12:5, то относительный избыток возникает при недостаточном синтезе желчных кислот (гиповитаминозы С, В3, В5) и/или фосфатидилхолина (недостаток полиненасыщенных жирных кислот, витаминов В6, В9, В12). В результате нарушения соотношения образуется желчь, из которой холестерол, как плохо растворимое соединение, кристаллизуется. Далее к кристаллам присоединяются ионы кальция и билирубин, что сопровождается образованием желчных камней.

Застой в желчном пузыре, возникающий при неправильном питании, приводит к сгущению желчи из-за реабсорбции воды. Недостаток потребления воды или длительный прием мочегонных средств (лекарства, кофеин-содержащие напитки, этанол) существенно усугубляет эту проблему.

У детей свои причуды

Особенности переваривания жира у детей

У младенцев клетками слизистой корня языка и глотки (железы Эбнера) при сосании секретируется лингвальная липаза, продолжающая свое действие и в желудке.

У грудных младенцев и детей младшего возраста липаза желудка более активна, чем у взрослых, так как кислотность в желудке детей около 5,0. Помогает и то, что жиры молока эмульгированы. Жиры у младенцев дополнительно перевариваются за счет липазы, содержащейся в женском молоке, в коровьем молоке липаза отсутствует. Благодаря таким преимуществам у детей грудного возраста в желудке происходит 25-50% всего липолиза.

В двенадцатиперстной кишке гидролиз жира дополнительно осуществляется панкреатической липазой. До 7 лет активность панкреатической липазы невысока, что ограничивает способности ребенка к перевариванию пищевого жира, ее активность достигает максимума только к 8-9 годам. Но, тем не менее, это не мешает ребенку уже в первые месяцы жизни гидролизовать почти 100% пищевого жира и иметь 95% всасывания.

В грудном возрасте содержание желчных кислот в желчи увеличивается примерно в три раза, позднее этот процесс замедляется.