Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Спектральная плотность энергетической яркости. Характеристики теплового излучения (поток, энергетическая светимость, спектральная плотность энергетической светимости)

Тепловым излучением тел называется электромагнитное излучение, возникающее за счет той части внутренней энергии тела, которая связана с тепловым движением его частиц.

Основными характеристиками теплового излучения тел нагретых до температуры T являются:

1. Энергетическая светимость R (T ) -количество энергии, излучаемой в единицу времени с единицы поверхности тела, во всем интервале длин волн. Зависит от температуры, природы и состояния поверхности излучающего тела. В системе СИR ( T ) имеет размерность [Вт/м 2 ].

2. Спектральная плотность энергетической светимости r ( ,Т) =dW / d - количество энергии, излучаемое единицей поверхности тела, в единицу времени в единичном интервале длин волн (вблизи рассматриваемой длины волны ). Т.е. эта величина численно равна отношению энергииdW , испускаемой с единицы площади в единицу времени в узком интервале длин волн от до+d , к ширине этого интервала. Она зависит от температуры тела, длины волны, а также от природы и состояния поверхности излучающего тела. В системе СИr (, T ) имеет размерность [Вт/м 3 ].

Энергетическая светимостьR (T ) связана со спектральной плотностью энергетической светимостиr (, T ) следующим образом:

(1) [Вт/м 2 ]

3. Все тела не только излучают, но и поглощают падающие на их поверхность электромагнитные волны. Для определения поглощательной способности тел по отношению к электромагнитным волнам определенной длины волны вводится понятиекоэффициента монохроматического поглощения -отношение величины поглощенной поверхностью тела энергии монохроматической волны к величине энергии падающей монохроматической волны:

Коэффициент монохроматического поглощения является безразмерной величиной, зависящей от температуры и длины волны. Он показывает, какая доля энергии падающей монохроматической волны поглощается поверхностью тела. Величина (, T ) может принимать значения от 0 до 1.

Излучение в адиабатически замкнутой системе (не обменивающейся теплотой с внешней средой) называется равновесным . Если создать маленькое отверстие в стенке полости состояние равновесия измениться слабо и выходящее из полости излучение будет соответствовать равновесному излучению.

Если в такое отверстие направить луч, то после многократных отражений и поглощения на стенках полости он не сможет выйти обратно наружу. Это значит, что для такого отверстия коэффициент поглощения(, T ) = 1.

Рассмотренная замкнутая полость с небольшим отверстием служит одной из моделей абсолютно черного тела.

Абсолютно черным телом называется тело, которое поглощает все падающее на него излучение независимо от направления падающего излучения, его спектрального состава и поляризации (ничего не отражая и не пропуская).

Для абсолютно черного тела, спектральная плотность энергетической светимости является некоторой универсальной функцией длины волны и температурыf (, T ) и не зависит от его природы.

Все тела в природе частично отражают падающее на их поверхность излучение и поэтому не относятся к абсолютно черным телам.Если коэффициент монохроматического поглощения тела одинаков для всех длин волн и меньше единицы ((, T ) = Т =const<1),то такое тело называется серым . Коэффициент монохроматического поглощения серого тела зависит только от температуры тела, его природы и состояния его поверхности.

Кирхгофом было показано, что для всех тел, независимо от их природы, отношение спектральной плотности энергетической светимости к коэффициенту монохроматического поглощения является той же универсальной функцией длины волны и температурыf (, T ) , что и спектральная плотность энергетической светимости абсолютно черного тела:

Уравнение (3) представляет собой закон Кирхгофа.

Закон Кирхгофа можно сформулировать таким образом:для всех тел системы, находящихся в термодинамическом равновесии, отношение спектральной плотности энергетической светимости к коэффициенту монохроматического поглощения не зависит от природы тела, является одинаковой для всех тел функцией, зависящей от длины волны и температуры Т.

Из вышесказанного и формулы (3) ясно, что при данной температуре сильнее излучают те серые тела, которые обладают большим коэффициентом поглощения, а наиболее сильно излучают абсолютно черные тела. Так как для абсолютно черного тела(, T )=1, то из формулы (3) следует, что универсальная функцияf (, T ) представляет собой спектральную плотность энергетической светимости абсолютно черного тела

1. Характеристики теплового излучения.

2. Закон Кирхгофа.

3. Законы излучения черного тела.

4. Излучение Солнца.

5. Физические основы термографии.

6. Светолечение. Лечебное применение ультрафиолета.

7. Основные понятия и формулы.

8. Задачи.

Из всего многообразия электромагнитных излучений, видимых или невидимых человеческим глазом, можно выделить одно, которое присуще всем телам - это тепловое излучение.

Тепловое излучение - электромагнитное излучение, испускаемое веществом и возникающее за счет его внутренней энергии.

Тепловое излучение обусловливается возбуждением частиц вещества при соударениях в процессе теплового движения или ускоренным движением зарядов (колебания ионов кристаллической решетки, тепловое движение свободных электронов и т.д.). Оно возникает при любых температурах и присуще всем телам. Характерной чертой теплового излучения является сплошной спектр.

Интенсивность излучения и спектральный состав зависят от температуры тела, поэтому не всегда тепловое излучение воспринимается глазом как свечение. Например, тела, нагретые до высокой температуры, значительную часть энергии испускают в видимом диапазоне, а при комнатной температуре почти вся энергия испускается в инфракрасной части спектра.

26.1. Характеристики теплового излучения

Энергия, которую теряет тело вследствие теплового излучения, характеризуется следующими величинами.

Поток излучения (Ф) - энергия, излучаемая за единицу времени со всей поверхности тела.

Фактически, это мощность теплового излучения. Размерность потока излучения - [Дж/с = Вт].

Энергетическая светимость (Re) - энергия теплового излучения, испускаемого за единицу времени с единичной поверхности нагретого тела:

Размерность этой характеристики - [Вт/м 2 ].

И поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: Ф = Ф(Т), Re = Re(T).

Распределение энергетической светимости по спектру теплового излучения характеризует ее спектральная плотность. Обозначим энергию теплового излучения, испускаемого единичной поверхностью за 1 с в узком интервале длин волн от λ до λ + dλ, через dRe.

Спектральной плотностью энергетической светимости (r) или испускательной способностью называется отношение энергетической светимости в узком участке спектра (dRe) к ширине этого участка (d λ):

Примерный вид спектральной плотности и энергетичекая светимость (dRe) в интервале волн от λ до λ + dλ, показаны на рис. 26.1.

Рис. 26.1. Спектральная плотность энергетической светимости

Зависимость спектральной плотности энергетической светимости от длины волны называют спектром излучения тела. Знание этой зависимости позволяет рассчитать энергетическую светимость тела в любом диапазоне длин волн:

Тела не только испускают, но и поглощают тепловое излучение. Способность тела к поглощению энергии излучения зависит от его вещества, температуры и длины волны излучения. Поглощательную способность тела характеризует монохроматический коэффициент поглощения α.

Пусть на поверхность тела падает поток монохроматического излучения Φ λ с длиной волны λ. Часть этого потока отражается, а часть поглощается телом. Обозначим величину поглощенного потока Φ λ погл.

Монохроматическим коэффициентом поглощения α λ называется отношение потока излучения, поглощенного данным телом, к величине падающего монохроматического потока:

Монохроматический коэффициент поглощения - величина безразмерная. Его значения лежат между нулем и единицей: 0 ≤ α ≤ 1.

Функция α = α(λ,Τ), выражающая зависимость монохроматического коэффициента поглощения от длины волны и температуры, называется поглощательной способностью тела. Ее вид может быть весьма сложным. Ниже рассмотрены простейшие типы поглощения.

Абсолютно черное тело - такое тело, коэффициент поглощения которого равен единице для всех длин волн: α = 1. Оно поглощает все падающее на него излучение.

По своим поглощательным свойствам к абсолютно черному телу близки сажи, черный бархат, платиновая чернь. Очень хорошей моделью абсолютно черного тела является замкнутая полость с небольшим отверстием (O). Стенки полости зачернены рис. 26.2.

Луч, попавший в это отверстие, после многократных отражений от стенок поглощается практически полностью. Подобные устройства

Рис. 26.2. Модель абсолютно черного тела

применяют в качестве световых эталонов, используют при измерениях высоких температур и т.п.

Спектральная плотность энергетической светимости абсолютно черного тела обозначается ε(λ,Τ). Эта функция играет важнейшую роль в теории теплового излучения. Ее вид сначала был установлен экспериментально, а затем получен теоретически (формула Планка).

Абсолютно белое тело - такое тело, коэффициент поглощения которого равен нулю для всех длин волн: α = 0.

Истинно белых тел в природе нет, однако существуют тела, близкие к ним по свойствам в достаточно широком диапазоне температур и длин волн. Например, зеркало в оптической части спектра отражает почти весь падающий свет.

Серое тело - это тело, для которого коэффициент поглощения не зависит от длины волны: α = const < 1.

Некоторые реальные тела обладают этим свойством в определенном интервале длин волн и температур. Например, «серой» (α = 0,9) можно считать кожу человека в инфракрасной области.

26.2. Закон Кирхгофа

Количественная связь между излучением и поглощением установлена Г. Кирхгофом (1859).

Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:

Отметим некоторые следствия этого закона.

1. Если тело при данной температуре не поглощает какое-либо излучение, то оно его и не испускает. Действительно, если для

26.3. Законы излучения черного тела

Законы излучения абсолютно черного тела были установлены в следующей последовательности.

В 1879 г. Й. Стефан экспериментально, а в 1884 г. Л. Больцман теоретически определили энергетическую светимость абсолютно черного тела.

Закон Стефана-Больцмана - энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:

Значения коэффициентов поглощения для некоторых материалов приведены в табл. 26.1.

Таблица 26.1. Коэффициенты поглощения

Немецкий физик В. Вин (1893) установил формулу для длины волны, на которую приходится максимум испускательной способности абсолютно черного тела. Соотношение, которое он получил, было названо его именем.

При повышении температуры максимум испускательной способности смещается влево (рис. 26.3).

Рис. 26.3. Иллюстрация закона смещения Вина

В табл. 26.2 указаны цвета в видимой части спектра, соответствующие излучениям тел при различных температурах.

Таблица 26.2. Цвета нагретых тел

Используя законы Стефана-Больцмана и Вина, можно определить температуры тел посредством измерения излучения этих тел. Например, так определяют температуру поверхности Солнца (~6000 К), температуру в эпицентре взрыва (~10 6 К) и т.д. Общее название этих методов - пирометрия.

В 1900 г. М. Планк получил формулу для расчета испускательной способности абсолютно черного тела теоретически. Для этого ему пришлось отказаться от классических представлений о непрерывности процесса излучения электромагнитных волн. По представлениям Планка, поток излучения состоит из отдельных порций - квантов, энергии которых пропорциональны частотам света:

Из формулы (26.11) можно теоретически получить законы Стефана-Больцмана и Вина.

26.4. Излучение Солнца

В пределах Солнечной системы Солнце - самый мощный источник теплового излучения, обусловливающий жизнь на Земле. Солнечное излучение обладает лечебными свойствами (гелиотерапия), используется как средство закаливания. Оно же может оказывать и негативное воздействие на организм (ожог, тепловой

Спектры солнечного излучения на границе земной атмосферы и у поверхности Земли различны (рис. 26.4).

Рис. 26.4. Спектр солнечного излучения: 1 - на границе атмосферы, 2 - у поверхности Земли

На границе атмосферы спектр Солнца близок к спектру абсолютно черного тела. Максимум испускательной способности приходится на λ 1max = 470 нм (синий цвет).

У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. Эти лучи практически полностью поглощаются озоновым слоем. Максимум испускательной способности приходится на λ 2max = 555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз.

Поток теплового излучения Солнца на границе земной атмосферы определяет солнечная постоянная I.

Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м 2 . В Москве в момент летнего солнцестояния (июнь) - 930 Вт/м 2 .

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. На рис. 26.5 приведены сглаженные кривые распределения энергии солнечного света: I - за пределами атмосферы; II - при положении Солнца в зените; III - при высоте 30° над горизонтом; IV - при условиях, близких к восходу и закату (10° над горизонтом).

Рис. 26.5. Распределение энергии в спектре Солнца при различных высотах над горизонтом

Различные составляющие солнечного спектра по-разному проходят через земную атмосферу. На рисунке 26.6 показана прозрачность атмосферы при большой высоте стояния Солнца.

26.5. Физические основы термографии

Тепловое излучение человека составляет существенную долю его тепловых потерь. Излучательные потери человека равны разности испущенного потока и поглощенного потока излучения окружающей среды. Мощность излучательных потерь рассчитывается по формуле

где S - площадь поверхности; δ - приведенный коэффициент поглощения кожи (одежды), рассматриваемой как серое тело; Т 1 - температура поверхности тела (одежды); Т 0 - температура окружающей среды.

Рассмотрим следующий пример.

Рассчитаем мощность излучательных потерь раздетого человека при температуре окружающей среды 18°С (291 К). Примем: площадь поверхности тела S = 1,5 м 2 ; температура кожи Т 1 = 306 К (33°С). Приведенный коэффициент поглощения кожи найдем по табл. 26.1 = 5,1*10 -8 Вт/м 2 К 4). Подставив эти значения в формулу (26.11), получим

Р = 1,5*5,1*10 -8 * (306 4 - 291 4) ≈122 Вт.

Рис. 26.6. Прозрачность земной атмосферы (в процентах) для различных участков спектра при большой высоте стояния Солнца.

Тепловое излучение человека может быть использовано как диагностический параметр.

Термография - диагностический метод, основанный на измерении и регистрации теплового излучения поверхности тела человека или его отдельных участков.

Распределение температуры на небольшом участке поверхности тела можно определить с помощью специальных жидкокристаллических пленок. Такие пленки чувствительны к небольшим изменениям температуры (меняют цвет). Поэтому на пленке возникает цветной тепловой «портрет» участка тела, на который она наложена.

Более совершенный способ состоит в использовании тепловизоров, преобразующих инфракрасное излучение в видимый свет. Излучение тела с помощью специального объектива проецируется на матрицу тепловизора. После преобразования на экране формируется детальный тепловой портрет. Участки с различными температурами отличаются цветом или интенсивностью. Современные методы позволяют фиксировать различие в температурах до 0,2 градуса.

Тепловые портреты используются в функциональной диагностике. Различные патологии внутренних органов могут образовывать на поверхности кожные зоны с измененной температурой. Обнаружение таких зон указывает на наличие патологии. Термографический метод облегчает дифференциальный диагноз между доброкачественными и злокачественными опухолями. Этот метод является объективным средством контроля за эффективностью терапевтических методов лечения. Так, при термографическом обследовании больных псориазом было установлено, что при наличии выраженной инфильтрации и гиперемии в бляшках отмечается повышение температуры. Снижение температуры до уровня окружающих участков в большинстве случаев свидетельствует о регрессии процесса на коже.

Повышенная температура часто является показателем инфекции. Чтобы определить температуру человека, достаточно взглянуть через инфракрасное устройство на его лицо и шею. Для здоровых людей отношение температуры лба к температуре в области сонной артерии лежит в диапазоне от 0,98 до 1,03. Это отношение и можно использовать при экспресс-диагностике во время эпидемий для проведения карантинных мероприятий.

26.6. Светолечение. Лечебное применение ультрафиолета

Инфракрасное излучение, видимый свет и ультрафиолетовое излучение находят широкое применение в медицине. Напомним диапазоны их длин волн:

Светолечением называют применение в лечебных целях инфракрасного и видимого излучений.

Проникая в ткани, инфракрасные лучи (как и видимые) в месте своего поглощения вызывают выделение теплоты. Глубина проникновения инфракрасных и видимых лучей в кожу показана на рис. 26.7.

Рис. 26.7. Глубина проникновения излучения в кожу

В лечебной практике в качестве источников инфракрасного излучения используются специальные облучатели (рис. 26.8).

Лампа Минина представляет собой лампу накаливания с рефлектором, локализующим излучение в необходимом направлении. Источником излучения служит лампа накаливания мощностью 20-60 Вт из бесцветного или синего стекла.

Светотепловая ванна представляет собой полуцилиндрический каркас, состоящий из двух половин, соединенных подвижно между собой. На внутренней поверхности каркаса, обращенной к пациенту, укреплены лампы накаливания мощностью 40 Вт. В таких ваннах на биологический объект действуют инфракрасное и видимое излучения, а также нагретый воздух, температура которого может достигать 70°С.

Лампа Соллюкс представляет собой мощную лампу накаливания, помещенную в специальный рефлектор на штативе. Источником излучения служит лампа накаливания мощностью 500 Вт (температура вольфрамовой нити 2 800°С, максимум излучения приходится на длину волны 2 мкм).

Рис. 26.8. Облучатели: лампа Минина (а), светотепловая ванна (б), лампа Соллюкс (в)

Лечебное применение ультрафиолета

Ультрафиолетовое излучение, применяемое в медицинских целях, подразделяют на три диапазона:

При поглощении ультрафиолетового излучения в тканях (в коже) происходят различные фотохимические и фотобиологические реакции.

В качестве источников излучения используют лампы высокого давления (дуговые, ртутные, трубчатые), люминесцентные лампы, газоразрядные лампы низкого давления, одной из разновидностей которых являются бактерицидные лампы.

А-излучение оказывает эритемное и загарное действие. Оно используется при лечении многих дерматологических заболеваний. Некоторые химические соединения фурокумаринового ряда (например, псорален) способны сенсибилизировать кожу этих больных к длинноволновому ультрафиолетовому излучению и стимулировать образование в меланоцитах пигмента меланина. Совместное применение данных препаратов с А-излучением является основой метода лечения, называемого фотохимиотерапией или ПУВА-терапией (PUVA: Р - псорален; UVA - ультрафиолетовое излучение зоны А). Облучению подвергают часть или все тело.

В-излучение оказывает ватиминообразующее, антирахитное действие.

С-излучение оказывает бактерицидное действие. При облучении происходит разрушение структуры микроорганизмов и грибов. С-излучение создается специальными бактерицидными лампами (рис. 26.9).

Некоторые лечебные методики используют С-излучение для облучения крови.

Ультрафиолетовое голодание. Ультрафиолетовое излучение необходимо для нормального развития и функционирования организма. Его недостаток приводит к возникновению ряда серьезных заболеваний. С ультрафиолетовым голоданием сталкиваются жители крайнего

Рис. 26.9. Бактерицидный облучатель (а), облучатель для носоглотки (б)

Севера, рабочие горнорудной промышленности, метрополитена, жители крупных городов. В городах недостаток ультрафиолета связан с загрязнением атмосферного воздуха пылью, дымом, газами, задерживающими УФ-часть солнечного спектра. Окна помещений не пропускают УФ-лучи с длиной волны λ < 310 нм. Значительно снижают УФ-поток загрязненные стекла и занавеси (тюлевые занавески снижают УФ-излучение на 20 %). Поэтому на многих производствах и в быту наблюдается так называемая «биологическая полутьма». В первую очередь страдают дети (возрастает вероятность заболевания рахитом).

Вредность ультрафиолетового облучения

Воздействие избыточных доз ультрафиолетового облучения на организм в целом и на отдельные его органы приводит к возникновению ряда патологий. В первую очередь это относится к последствиям бесконтрольного загорания: ожоги, пигментные пятна, повреждение глаз - развитие фотоофтальмии. Действие ультрафиолета на глаз подобно эритеме, так как оно связано с разложением протеинов в клетках роговой и слизистой оболочек глаза. Живые клетки кожи человека защищены от деструктивного действия УФ лучей «мертвы-

ми» клетками рогового слоя кожи. Глаза лишены этой защиты, поэтому при значительной дозе облучения глаз после скрытого периода развивается воспаление роговой (кератит) и слизистой (конъюнктивит) оболочек глаза. Этот эффект обусловлен лучами с длиной волны меньше 310 нм. Необходимо защищать глаз от таких лучей. Особо следует рассмотривать бластомогенное действие УФ-радиации, приводящее к развитию рака кожи.

26.7. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

26.8. Задачи

2. Определить, во сколько раз отличаются энергетические светимости участков поверхности тела человека, имеющих температуры 34 и 33°С соответственно?

3. При диагностике методом термографии опухоли молочной железы пациентке дают выпить раствор глюкозы. Через некоторое время регистрируют тепловое излучение поверхности тела. Клетки опухолевой ткани интенсивно поглощают глюкозу, в результате чего их теплопродукция возрастает. На сколько градусов при этом меняется температура участка кожи над опухолью, если излучение с поверхности возрастает на 1% (в 1,01 раза)? Начальная температура участка тела равна 37°С.

6. Насколько увеличилась температура тела человека, если поток излучения с поверхности тела возрос на 4%? Начальная температура тела равна 35°С.

7. В комнате стоят два одинаковых чайника, содержащие равные массы воды при 90°С. Один из них никелированный, а другой темный. Какой из чайников быстрее остынет? Почему?

Решение

По закону Кирхгофа отношение испускательной и поглощательной способностей одинаково у всех тел. Никелированный чайник отражает почти весь свет. Следовательно, его поглощательная способность мала. Соответственно мала и испускательная способность.

Ответ: быстрее остынет темный чайник.

8. Для уничтожения жучков-вредителей зерно подвергают действию инфракрасного облучения. Почему жучки погибают, а зерно нет?

Ответ: жучки имеют черный цвет, поэтому интенсивно поглощают инфракрасное излучение и гибнут.

9. Нагревая кусок стали, мы при температуре 800°С будем наблюдать яркое вишнево-красное каление, но прозрачный стерженек плавленого кварца при той же температуре совсем не светится. Почему?

Решение

См. задачу 7. Прозрачное тело поглощает малую часть света. Поэтому и его испускательная способность мала.

Ответ: прозрачное тело практически не излучает, даже будучи сильно нагретым.

10. Почему в холодную погоду многие животные спят, свернувшись в клубок?

Ответ: при этом уменьшается открытая поверхность тела и соответственно уменьшаются потери на излучение.


.

ИСПУСКАНИЕ И ПОГЛОЩЕНИЕ ЭНЕРГИИ

АТОМАМИ И МОЛЕКУЛАМИ

ВОПРОСЫ К ЗАНЯТИЮ ПО ТЕМЕ:

1.Тепловое излучение. Его основные характеристики: поток излучения Ф, энергетическая светимость (интенсивность) R, спектральная плотность энергетической светимости r λ ; коэффициент поглощения α, монохроматический коэффициент поглощения α λ. Абсолютно чёрное тело. Закон Кирхгофа.

2. Спектры теплового излучения а.ч.т. (график). Квантовый характер теплового излучения (гипотеза Планка; формулу для ε λ запоминать не надо). Зависимость спектра а.ч.т. от температуры (график). Закон Вина. Закон Стефана-Больцмана для а.ч.т. (без вывода) и для других тел.

3. Строение электронных оболочек атомов. Энергетические уровни. Испускание энергии при переходах между энергетическими уровнями. Формула Бора (для частоты и для длины волны ). Спектры атомов. Спектр атома водорода. Спектральные серии. Общее понятие о спектрах молекул и конденсированных сред (жидкости, твёрдые тела). Понятие о спектральном анализе и его использовании в медицине.

4. Люминесценция. Виды люминесценции. Флюоресценция и фосфоресценция. Роль метастабильных уровней. Спектры люминесценции. Правило Стокса. Люминесцентный анализ и его использование в медицине.

5. Закон поглощения света (закон Бугера; вывод). Коэффициент пропускания τ и оптическая плотность D. Определение концентрации растворов по поглощению света.

Лабораторная работа: «съёмка спектра поглощения и определение концентрации раствора с помощью фотоэлектроколориметра».

ЛИТЕРАТУРА:

Обязательная: А.Н.Ремизов. «Медицинская и биологическая физика», М., «Высшая школа», 1996, гл. 27, §§ 1–3; гл.29, §§ 1,2

  • дополнительная: Испускание и поглощение энергии атомами и молекулами, лекция, ризограф, изд. кафедры, 2002 г.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ФОРМУЛЫ

1. Тепловое излучение

Все тела даже без всякого внешнего воздействия испускают электромагнитные волны. Источником энергии для этого излучения является тепловое движение составляющих тело частиц, поэтому оно называется тепловым излучением. При высоких температурах (порядка 1000 К и более) это излучение попадает частично в диапазон видимого света, при более низких температурах испускаются инфракрасные лучи, а при очень низких – радиоволны.

Поток излучения Ф - это мощность излучения, испускаемого источником , или энергия излучения, испускаемая в единицу времени: Ф = Р = ; единица потока - ватт.

Энергетическая светимость R - это поток излучения, который испускается с единицы поверхности тела: ; единица энергетической светимости – Вт.м –2 .

Спектральная плотность энергетической светимости r λ - это отношение энергетической светимости тела в пределах небольшого интервала длин волн (Δ R λ ) к величине этого интервала Δ λ:

Размерность r λ – Вт.м - 3

Абсолютно чёрным телом (а.ч.т.) называется тело, которое полностью поглощает падающее излучение. В природе таких тел нет, но хорошей моделью а.ч.т. является небольшое отверстие в замкнутой полости.

Способность тел поглощать падающее излучение характеризует коэффициент поглощения α , то есть отношение поглощённого потока излучения к падающему: .

Монохроматический коэффициент поглощения - это значение коэффициента поглощения, измеренное в узком спектральном интервале около некоторого значения λ.

Закон Кирхгофа: при постоянной температуре отношение спектральной плотности энергетической светимости при определённой длине волны к монохроматическому коэффициенту поглощения при той же длине волны одинаково для всех тел и равно спектральной плотности энергетической светимости а.ч.т. при этой длине волны:

(иногда r λ А.Ч.Т обозначают ε λ)

Абсолютно чёрное тело поглощает и испускает излучение всех длин волн, поэтому спектр а.ч.т. всегда сплошной. Вид этого спектра зависит от температуры тела. С повышением температуры , во-первых, значительно растёт энергетическая светимость; во-вторых, длина волны, соответствующая максимуму излучения max ) , сдвигается в сторону коротких длин волн :, где b ≈ 29090 мкм.К -1 (закон Вина).

Закон Стефана-Больцмана: энергетическая светимость а.ч.т. пропорциональна четвёртой степени температуры тела по шкале Кельвина: R = σT 4

2. Испускание энергии атомами и молекулами

Как известно, в электронной оболочке атома энергия электрона может принимать только строго определённые, характерные для данного атома, значения. По-другому говорят, что электрон может находиться только на определённых энергетических уровнях. Когда электрон находится на данном энергетическом уровне, он не изменяет своей энергии, то есть не поглощает и не испускает свет. При переходе с одного уровня на другой энергия электрона изменяется, и при этом поглощается или испускается квант света (фотон). Энергия кванта равна разности энергий уровней, между которыми происходит переход: Е КВАНТА = hν = Е n – E m где n и m – номера уровней (формула Бора).

Переходы электронов между различными уровнями происходят с разной вероятностью. В ряде случаев вероятность перехода очень близка к нулю; соответствующие спектральные линии в обычных условиях не наблюдаются. Такие переходы называют запрещёнными.

Во многих случаях энергия электрона может не преобразовываться в энергию кванта, а переходить в энергию теплового движения атомов или молекул. Такие переходы называются безызлучательными.

Кроме вероятности перехода яркость спектральных линий прямо пропорциональна числу атомов излучающего вещества. Эта зависимость лежит в основе количественного спектрального анализа.
3. Люминесценция

Люминесценцией называют любое не тепловое излучение. Источники энергии для этого излучения могут быть различными, соответственно говорят о разных видах люминесценции. Наиболее важными из них являются: хемолюминесценция – свечение, возникающее при некоторых химических реакциях; биолюминесценция – это хемолюминесценция в живых организмах; катодолюминесценция – свечение под действием потока ълектронов, которое используется в кинескопах телевизоров, электронно-лучевых трубках, газосветных лампах и др.; электролюминесценция – свечение, возникающее в электрическом поле (чаще всего в полупроводниках). Наиболее интересным видом люминесценции является фотолюминесценция. Это такой процесс, при котором атомы или молекулы поглощают свет (или УФ-излучение) в одном диапазоне длин волн, а испускают в другом (например, поглощают синие лучи, а испускают жёлтые). При этом вещество поглощает кванты с относительно большой энергией hν 0 (с малой длиной волны). Далее электрон может вернуться не сразу на основной уровень, а сначала перейти на промежуточный, а затем – на основной (промежуточных уровней может быть и несколько). В большинстве случаев часть переходов являются безызлучательными, то есть энергия электрона переходит в энергию теплового движения. Поэтому энергия квантов, испускаемых при люминесценции, будет меньше, чем энергия поглощённого кванта. Длины волн испускаемого света при этом должны быть больше, чем длина волны поглощённого света. Если сказанное сформулировать в общем виде, получим закон Стокса : спектр люминесценции сдвинут в сторону более длинных волн относительно спектра излучения, вызывающего люминесценцию.

Люминесцирующие вещества бывают двух типов. В одних свечение прекращается практически мгновенно после выключения возбуждающего света. Такое кратковременное свечение называется флуоресценция.

В веществах другого типа после выключения возбуждающего света свечение угасает постепенно (по экспоненциальному закону). Такое длительное свечение называется фосфоресценция. Причина длительного свечения состоит в том, что в атомах или молекулах таких веществ имеются метастабильные уровни. Метастабильным называется такой энергетический уровень, на котором электроны могут задерживаться значительно дольше, чем на обычных уровнях. Поэтому длительность фосфоресценции может составлять минуты, часы и даже сутки.
4. Закон поглощения света (закон Бугера)

Когда поток излучения проходит через вещество, он теряет часть своей энергии (поглощённая энергия переходит в тепловую). Закон поглощения света называется закон Бугера: Ф = Ф 0 ∙ е – κ λ · L ,

где Ф 0 - падающий поток, Ф – поток, прошедший через слой вещества толщиной L; коэффициент κ λ носит название натуральный показатель поглощения (его величина зависит от длины волны). Для практических расчётов предпочитают вместо натуральных логарифмов пользоваться десятичными. Тогда закон Бугера принимает вид: Ф = Ф 0 ∙10 – k λ ∙ L ,

где k λ – десятичный показатель поглощения.

Коэффициентом пропускания называют величину

Оптическая плотность D - это величина, определяемая равенством: . М ожно сказать и по-другому: оптическая плотность D- это величина, стоящая в показателе степени в формуле закона Бугера: D = k λ ∙ L
Для растворов большинства веществ оптическая плотность прямо пропорциональна концентрации растворённого вещества: D = χ λ C L ;

коэффициент χ λ называется молярный показатель поглощения (если концентрация указана в молях) или удельный показатель поглощения (если концентрация указана в граммах). Из последней формулы получаем: Ф = Ф 0 ∙10 - χ λ C L (закон Бугера – Бера )

Эти формулы лежат в основе наиболее распространённого в клинических и биохимических лабораториях метода определения концентраций растворённых веществ по поглощению света.

ЗАДАЧИ ОБУЧАЮЩЕГО ТИПА С РЕШЕНИЯМИ

(В дальнейшем для краткости пишем просто «обучающие задачи»)


Обучающая задача № 1

Электрический нагреватель (радиатор) излучает поток инфракрасных лучей 500 Вт. Площадь поверхности радиатора 3300 см 2 . Найти энергию, излучаемую радиатором за 1 час и энергетическую светимость радиатора.

Дано: Найти

Ф = 500 Вт W и R

t = 1 час = 3600 c

S = 3300 см 2 = 0,33 м 2

Решение:

Поток излучения Ф – это мощность излучения или энергия, излучаемая в единицу времени: . Отсюда

W = Ф·t = 500 Вт·3600 с = 18·10 5 Дж = 1800 кДж

Обучающая задача № 2

При какой длине волны тепловое излучение кожи человека максимально (то есть r λ = max) ? Температура кожи на открытых частях тела (лицо, руки) примерно 30 о С.

Дано: Найти:

Т = 30 о С = 303 К λ max

Решение:

Подставляем данные в формулу Вина: ,

то есть практически всё излучение лежит в ИК-диапазоне спектра.

Обучающая задача № 3

Электрон находится на энергетическом уровне с энергией 4,7.10 –19 Дж

При облучении светом с длиной волны 600 нм он перешёл на уровень с более высокой энергией. Найти энергию этого уровня.

Решение:

Обучающая задача № 4

Десятичный показатель поглощения воды для солнечного света равен 0,09 м –1 . Какая доля излучения дойдёт до глубины L = 100 м?

Дано Найти:

k = 0,09 м – 1

Решение:

Запишем закон Бугера: . Доля излучения, доходящего до глубины L, есть, очевидно, ,

то есть до глубины 100 м дойдёт одна миллиардная солнечного света.
Обучающая задача № 5

Свет проходит последовательно через два светофильтра. У первого оптическая плотность D 1 = 0,6; у второго D 2 = 0,4. Какой процент потока излучения пройдёт через эту систему?

Дано: Найти:

D 1 = 0,6 (в %%)

Решение:

Решение начинаем с рисунка данной системы

СФ-1 СФ-2

Находим Ф 1: Ф 1 = Ф 0 ·10 – D 1

Аналогично, поток, прошедший через второй светофильтр, равен:

Ф 2 = Ф 1 ·10 – D 2 = Ф 0 ·10 – D 1 ·10 – D 2 = Ф 0 ·10 – (D 1 + D 2)

Полученный результат имеет общее значение : если свет проходит последовательно через систему из нескольких объектов, общая оптическая плотность будет равна сумме оптических плотностей этих объектов .

В условиях нашей задачи через систему двух светофильтров пройдёт поток Ф 2 = 100%∙10 – (0,6 + 0,4) = 100%∙10 – 1 = 10%


Обучающая задача № 6

По закону Бугера-Бэра можно, в частности, определять концентрацию ДНК. В видимой области растворы нуклеиновых кислот прозрачны, но они сильно поглощают в УФ части спектра; максимум поглощения лежит около 260 нм. Очевидно, что именно в данной области спектра и надо измерять поглощение излучения; при этом чувствительность и точность измерения будут наилучшми.

Условия задачи : при измерении поглощения раствором ДНК УФ-лучей с длиной волны 260 нм прошедший поток излучения был ослаблен на 15%. Длина пути луча в кювете с раствором « х » равна 2 см. Молярный показатель поглощения (десятичный) для ДНК при длине волны 260 нм равен 1,3.10 5 моль – 1 .см 2 Найти концентрацию ДНК в растворе.

Дано:

Ф 0 = 100%; Ф = 100% – 15% = 85% Найти: С ДНК

х = 2 см; λ = 260 нм

χ 260 = 1,3.10 5 моль –1 .см 2

Решение:

(мы „перевернули“ дробь, чтобы избавиться от отрицательного показателя степени). . Теперь логарифмируем: , и ; подставляем:

0,07 и С = 2,7.10 – 7 моль/см 3

Обратите внимание на высокую чувствительность метода!


ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
При решении задач принять значения постоянных:

b = 2900 мкм.К; σ = 5,7.10 – 8 Вт.К 4; h = 6,6.10 – 34 Дж.с; c = 3.10 8 м.с –1


1. Чему равна энергетическая светимость поверхности тела человека, если максимум излучения приходится на длину волны 9,67 мкм? Кожу можно считать абсолютно чёрным телом.

2. Две лампочки имеют совершенно одинаковую конструкцию за исключением того, что в одной нить накала сделана из чистого вольфрама (α = 0,3), а в другой покрыта платиновой чернью (α = 0,93). У какой лампочки поток излучения больше? Во сколько раз?

3. В каких областях спектра лежат длины волн, соответствующие максимуму спектральной плотности энергетической светимости, если источником излучения является: а) спираль электрической лампочки (Т = 2 300 К); б) поверхность Солнца (Т = 5 800 К); в) поверхность огненного шара ядерного взрыва в момент, когда её температура около 30 000 К? Отличием в свойствах указанных источников излучения от а.ч.т. пренебречь.

4. Раскалённое металлическое тело, поверхность которого 2.10 – 3 м 2 , при температуре поверхности 1000 К излучает поток 45,6. Вт. Чему равен коэффициент поглощения поверхности этого тела?

5. Лампочка имеет мощность 100 Вт. Площадь поверхности нити накаливания 0,5.10 – 4 м 2 .Температура нити накаливания 2 400 К. Чему равен коэффициент поглощения поверхности нити?

6. При температуре кожи 27 0 С с каждого квадратного сантиметра поверхности тела излучается 0,454 Вт. Можно ли (с точностью не хуже 2 %) считать кожу абсолютно чёрным телом?

7. В спектре голубой звезды максимум излучения соответствует длине волны 0,3 мкм. Чему равна температура поверхности этой звезды?

8. Какую энергию за один час излучает тело с поверхностью 4 000 см 2

при температуре 400 К, если коэффициент поглощения тела равен 0,6 ?

9. Пластинка (А) имеет площадь поверхности 400 см 2 ; её коэффициент поглощения равен 0,4. У другой пластинки (Б) площадью 200 см 2 коэффициент поглощения 0,2. Температура пластинок одинакова. Какая пластинка излучает больше энергии и во сколько раз?

10 – 16. Качественный спектральный анализ. На основании спектра поглощения одного из органических соединений, спектры которых

приведены на рисунке, определить, какие функциональные группы входят в состав данного вещества, Использовать данные таблицы:


Группа; тип связи

Поглощаемые длины волн, мкм

Группа, тип связи

Поглощаемые

длины волн, мкм



-ОН

2,66 – 2,98

-NH 4

7,0 – 7,4

-NH

2,94 – 3,0

-SH

7,76

 CH

3,3

-CF

8,3

-N  N

4,67

-NH 2

8,9

-C = N

5,94

-NO

12,3

-N = N

6,35

-SO 2

19,2

-CN 2

6,77

-C = O

23,9

10 – график а); 11 – график б); 12 – график в); 13 – график г);

14 – график д); 15 – график е); 16 – график ж).

Обратите внимание на то, какая величина на Вашем графике отложена по вертикальной оси!

17. Свет проходит последовательно через два светофильтра с коэффициентами пропускания 0,2 и 0,5. Какой процент излучения выйдет из такой системы?

18. Свет проходит последовательно через два светофильтра с оптическими плотностями 0,7 и 0,4. Какой процент излучения пройдёт через такую систему?

19. Для защиты от светового излучения ядерного взрыва необходимы очки, ослабляющие свет не менее, чем в миллион раз. Стекло, из которого хотят сделать такие очки при толщине 1 мм имеет оптическую плотность 3. Какой толщины стекло надо взять, чтобы достичь требуемого результата?

20 Для предохранения глаз при работе с лазером требуется, чтобы в глаз мог попасть поток излучения, не превосходящий 0,0001% от потока, создаваемого лазером. Какой оптической плотностью должны обладать очки, чтобы обеспечить безопасность?

Общее задание к задачам 21 – 28 (количественный анализ):

На рисунке приведены спектры поглощения окрашенных растворов некоторых веществ. Кроме того, в задачах указаны величины D (оптическая плотность раствора при длине волны, соответствующей максимальному поглощению света) и х (толщина кюветы). Найти концентрацию раствора.

Обратите внимание на то, в каких единицах указана величина показателя поглощения на Вашем графике.

21. График а). D = 0,8 х = 2 см

22. График б). D = 1.2 х = 1 см

… 23. График в). D = 0,5 х = 4 см

24. График г). D = 0,25 х = 2 см

25 График д). D = 0,4 х = 3 см

26. График е) D = 0,9 х = 1 см

27. График ж). D = 0,2 х = 2 см

Энергетическая светимость тела R Т , численно равна энергии W , излучаемой телом во всем диапазоне длин волн (0 с единицы поверхности тела, в единицу времени, при температуре телаТ , т.е.

Испускательная способность тела rl ,Т численно равна энергии тела dWl , излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от lдо l+dl, т.е.

Эту величину называют также спектральной плотностью энергетической светимости тела.

Энергетическая светимость связана с испускательной способностью формулой

Поглощательная способность тела al ,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от l до l+dl, т.е.

Тело, для которого al ,T =1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого al ,T =const<1 во всем диапазоне длин волн называют серым.

где- спектральная плотность энергетической светимости, или лучеиспускательная способность тела .

Опыт показывает, что лучеиспускательная способность тела зависит от температуры тела (для каждой температуры максимум излучения лежит в своей области частот). Размерность .



Зная лучеиспускательную способность, можно вычислить энергетическую светимость:

называется поглощательной способностью тела . Она также сильно зависит от температуры.

По определению не может быть больше единицы. Для тела, полностью поглощающего излучения всех частот, . Такое тело называется абсолютно черным (это идеализация).

Тело, для которого и меньше единицы для всех частот , называется серым телом (это тоже идеализация).

Между испускательной и поглощательной способностью тела существует определенная связь. Мысленно проведем следующий эксперимент (рис. 1.1).

Рис. 1.1

Пусть внутри замкнутой оболочки находятся три тела. Тела находятся в вакууме, следовательно обмен энергией может происходить только за счет излучения. Опыт показывает, что такая система через некоторое время придет в состояние теплового равновесия (все тела и оболочка будут иметь одну и ту же температуру).

В таком состоянии тело, обладающее большей лучеиспускательной способностью, теряет в единицу времени и больше энергии, но, следовательно это тело должно обладать и большей поглощающей способностью:

Густав Кирхгоф в 1856 году сформулировал закон и предложил модель абсолютно черного тела .

Отношение лучеиспускательной к поглощательной способности не зависит от природы тела, оно является для всех тел одной и той же (универсальной ) функцией частоты и температуры.

, (1.2.3)

где – универсальная функция Кирхгофа.

Эта функция имеет универсальный, или абсолютный, характер.

Сами величины и, взятые отдельно, могут изменяться чрезвычайно сильно при переходе от одного тела к другому, но их отношение постоянно для всех тел (при данной частоте и температуре).

Для абсолютно черного тела, следовательно, для него, т.е. универсальная функция Кирхгофа есть не что иное, как лучеиспускательная способность абсолютно черного тела.

Абсолютно черных тел в природе не существует. Сажа или платиновая чернь имеют поглощающую способность, но только в ограниченном интервале частот. Однако полость с малым отверстием очень близка по своим свойствам к абсолютно черному телу. Луч, попавший внутрь, после многократных отражений обязательно поглощается, причём луч любой частоты (рис. 1.2).

Рис. 1.2

Лучеиспускательная способность такого устройства (полости) очень близка к f (ν,,T ). Таким образом, если стенки полости поддерживаются при температуре T , то из отверстия выходит излучение весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре.

Разлагая это излучение в спектр, можно найти экспериментальный вид функции f (ν,,T )(рис. 1.3), при разных температурах Т 3 > Т 2 > Т 1 .

Рис. 1.3

Площадь, охватываемая кривой, дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Эти кривые одинаковы для всех тел.

Кривые похожи на функцию распределения молекул по скоростям. Но там площади, охватываемые кривыми, постоянны, а здесь с увеличением температуры площадь существенно увеличивается. Это говорит о том, что энергетическая совместимость сильно зависит от температуры. Максимум излучения (излучательной способности) с увеличением температурысмещается в сторону больших частот.

Законы теплового излучения

Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более короткие волны оно испускает. Тело, находящееся в термодинамическом равновесии со своим излучением, называют абсолютно черным (АЧТ). Излучение абсолютно черного тела зависит только от его температуры. В 1900 году Макс Планк вывел формулу, по которой при заданной температуре абсолютно черного тела можно рассчитать величину интенсивности его излучения.

Австрийскими физиками Стефаном и Больцманом был установлен закон, выражающий количественное соотношение между полной излучательной способностью и температурой черного тела:

Этот закон носит название закон Стефана–Больцмана . Константа σ = 5,67∙10 –8 Вт/(м 2 ∙К 4) получила названиепостоянной Стефана–Больцмана .

Все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны

Этот закон получил название закон Вина . Так, для Солнца Т 0 = 5 800 К, и максимум приходится на длину волныλ max ≈ 500 нм, что соответствует зеленому цвету в оптическом диапазоне.

С увеличением температуры максимум излучения абсолютно черного тела сдвигается в коротковолновую часть спектра. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая – в инфракрасном.

Фотоэффект. Фотоны

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU |. Если напряжение на аноде меньше, чем –U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  2. Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота ν min , при которой еще возможен внешний фотоэффект.
  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию h νодному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e :

где c – скорость света, λ кр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10 –19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Энергия фотонов равна

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма . Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

§ 4 Энергетическая светимость. Закон Стефана-Больцмана.

Закон смещения Вина

R Э (интегральная энергетическая светимость) - энергетическая светимость определяет количество энергии, излучаемой с единичной поверхности за единицу времени во всем интервале частот от 0 до ∞ при данной температуре Т.

Связь энергетической светимости и лу-чеиспускательной способности

[ R Э ] =Дж/(м 2 ·с) = Вт/м 2

Закон Й. Стефана (австрийский ученый) и Л. Больцмана (немецкий ученый)

где

σ = 5.67·10 -8 Вт/(м 2 · К 4) - постоянная Стефа-на-Больцмана.

Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени термодинамической температуры.

Закон Стефана-Больцмана, определяя зависимость R Э от температуры, не даёт ответа относительно спектрального состава излучения абсолютно черного тела. Из экспериментальных кривых зависимости r λ ,Т от λ при различных Т следует, что распределение энергии в спектре абсолютно черного тела являет-ся неравномерным. Все кривые имеют максимум, который с увеличением Т смещается в сторону коротких длин волн. Площадь, ограниченная кривой за-висимости r λ ,Т от λ, равна R Э (это следует из геометрического смысла интегра-ла) и пропорциональна Т 4 .

Закон смещения Вина (1864 - 1928): Длина, волны (λ max), на которую приходится максимум лучеиспускательной способности а.ч.т. при данной тем-пературе, обратно пропорциональна температуре Т .

b = 2,9· 10 -3 м·К - постоянная Вина.

Смещение Вина происходит потому, что с ростом температуры максимум излучательной способности смещается в сторону коротких длин волн.

§ 5 Формула Рэлея-Джинса, формула Вина и ультрафиолетовая катастрофа

Закон Стефана-Больцмана позволяет определять энергетическую свети-мость R Э а.ч.т. по его температуре. Закон смещения Вина связывает темпера-туру тела с длиной волны, на которую приходятся максимальная лучеиспуска-тельная способность. Но ни тот, ни другой закон не решают основной задачи о том, как велика лучеиспускательная, способность, приходящаяся на каждую λ в спектре а.ч.т. при температуре Т . Для этого надо установить функциональ-ную зависимость r λ ,Т от λ и Т .

Основываясь на представлении о непрерывном характере испускания электромагнитных волн в законе равномерного распределения энергий по сте-пеням свободы, были получены две формулы для лучеиспускательной способ-ности а.ч.т.:

  • Формула Вина

где а, b = const .

  • Формула Рэлея-Джинса

k = 1,38·10 -23 Дж/K - постоянная Больцмана.

Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн и даёт резкие расхождения с опытом в области длин-ных волн. Формула Рэлея-Джинса оказалась верна для длинных волн и не применима для коротких.

Исследование теплового излучения с помощью формулы Рэлея-Джинса показало, что в рамках классической физики нельзя решить вопрос о функции, характеризующей излучательную способность а.ч.т. Эта неудачная попытка объяснения законов излучения а.ч.т. с помощью аппарата классической физи-ки получила название “ультрафиолетовой катастрофы”.

Если попытаться вычислить R Э с помощью формулы Рэлея-Джинса, то

  • ультрафиолетовая катастрофа

§6 Квантовая гипотеза и формула Планка.

В 1900 году М. Планк (немецкий ученый) выдвинул гипотезу, согласно которой испускание и поглощение энергии происходит не непрерывно, а оп-ределенными малыми порциями - квантами, причем энергия кванта пропор-циональна частоте колебаний (формула Планка):

h = 6,625·10 -34 Дж·с - постоянная Планка или

где

Так как излучение происходит порциями, то энергия осциллятора (колеб-лющегося атома, электрона) Е принимает лишь значения кратные целому чис-лу элементарных порций энергии, то есть только дискретные значения

Е = n Е о = n h ν .

ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

Впервые влияние света на ход электрических процессов было изучено Герцем в 1887 году. Он проводил опыты с электрическим разрядником и об-наружил, что при облучении ультрафиолетовым излучением разряд происхо-дит при значительно меньшем напряжении.

В 1889-1895 гг. А.Г. Столетов изучал воздействие света на металлы, ис-пользуя следующую схему. Два электрода: катод К из исследуемого металла и анод А (в схеме Столетова - металлическая сетка, пропускающая свет) в ваку-умной трубке подключены к батарее так, что с помощью сопротивления R можно изменять значение и знак подаваемого на них напряжения. При облу-чении цинкового катода в цепи протекал ток, регистрируемый миллиамперметром. Облучая катод светом различных длин волн, Столетов установил сле-дующие основные закономерности:

  • Наиболее сильное действие оказывает ультрафиолетовое излучение;
  • Под действием света из катода вырываются отрицательные заряды;
  • Сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Ленард и Томсон в 1898 году измерили удельный заряд (е / m ), вырывае-мых частиц, и оказалось, что он равняется удельному заряду электрона, следо-вательно, из катода вырываются электроны.

§ 2 Внешний фотоэффект. Три закона внешнего фотоэффекта

Внешним фотоэффектом называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фо-тоэффекте, называются фотоэлектронами, а образуемый ими ток называется фототоком.

С помощью схемы Столетова была получена следующая зависимость фото-тока от приложенного напряжения при неизменном световом потоке Ф (то есть была получена ВАХ - вольт- амперная характеристика):

При некотором напряжении U Н фототок достигает насыщения I н - все электроны, испускаемые катодом, достигают анода, следовательно, сила тока насыщения I н определяется количеством электронов, испускаемых катодом в единицу времени под действием света. Число высвобождаемых фотоэлектро-нов пропорционально числу падающих на поверхность катода квантов света. А количество квантов света определяется световым потоком Ф , падающим на катод. Число фотонов N , падающих за время t на поверхность определяется по формуле:

где W - энергия излучения, получаемая поверхностью за время Δ t ,

Энергия фотона,

Ф е - световой поток (мощность излучения).

1-й закон внешнего фотоэффекта (закон Столетова):

При фиксированной частоте падающего света фототок насыщения пропорционален падающему световому потоку:

I нас ~ Ф, ν = const

U з - задерживающее напряжение - напряжение, при котором ни одному электрону не удается долететь до анода. Следовательно, закон сохранения энергии в этом случае можно записать: энергия вылетающих электронов равна задерживающей энергии электрического поля

следовательно, можно найти максимальную скорость вылетающих фотоэлектронов V max

2- й закон фотоэффекта : максимальная начальная скорость V max фото-электронов не зависит от интенсивности падающего света (от Ф ), а определя-ется только его частотой ν

3- й закон фотоэффекта : для каждого вещества существует "красная граница"" фотоэффекта , то есть минимальная частота ν кp , зависящая от химической природы вещества и состояния его поверхности, при которой ещё возможен внешний фотоэффект.

Второй и третий законы фотоэффекта нельзя объяснить с помощью вол-новой природы света (или классической электромагнитной теории света). Со-гласно этой теории вырывание электронов проводимости из металла является результатом их "раскачивания" электромагнитным полем световой волны. При увеличении интенсивности света (Ф ) должна увеличиваться энергия, переда-ваемая электроном металла, следовательно, должна увеличиваться V max , а это противоречат 2-му закону фотоэффекта.

Так как по волновой теории энергия, передаваемая электромагнитным полем пропорциональна интенсивности света (Ф ), то свет любой; частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла, то есть красной границы фотоэффекта не существовало бы, что про-тиворечит 3-му закону фотоэффекта. Внешний фотоэффект является безынерционным. А волновая теория не может объяснить его безынерционность.

§ 3 Уравнение Эйнштейна для внешнего фотоэффекта.

Работа выхода

В 1905 году А. Эйнштейн объяснил фотоэффект на основании квантовых представлений. Согласно Эйнштейну, свет не только испускается квантами в соответствии с гипотезой Планка, но распространяется в пространстве и поглощается веществом отдельными порциями - квантами с энергией E 0 = hv . Кванты электромагнитного излучения называются фотонами .

Уравнение Эйнштейна (закон сохранения энергии для внешнего фото-эффекта):

Энергия падающего фотона hv расходуется на вырывание электрона из металла, то есть на работу выхода А вых , и на сообщение вылетевшему фотоэлектрону кинетической энергии .

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого тела в вакуум называется работой выхода .

Так как энергия Ферм к Е F зависит от температуры и Е F , также изменяется при изменении температуры, то, следовательно, А вых зависит от температуры.

Кроме того, работа выхода очень чувствительна к чистоте поверхности. Нанеся на поверхность пленку (Са , S г , Ва ) на W А вых уменьшается с 4,5 эВ для чистого W до 1,5 ÷ 2 эВ для примесного W .

Уравнение Эйнштейна позволяет объяснить в c е три закона внешнего фо-тоэффекта,

1-й закон: каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интен-сивности (Ф ) света

2-й закон: V max ~ ν и т.к. А вых не зависит от Ф , то и V max не зависит от Ф

3-й закон: При уменьшении ν уменьшается V max и при ν = ν 0 V max = 0, следовательно, 0 = А вых , следовательно, т.е. существует минимальная частота, начиная с которой возможен внешний фотоэффект.