Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Физические основы классической механики. Классическая механика Ньютона: основные разделы

Это раздел физики, изучающий движение на основе законов Ньютона. Классическая механика подразделяется на:
Базовыми понятиями классической механики является понятие силы, массы и движения. Масса в классической механике определяется как мера инерции, или способности тела к сохранению состояния покоя или равномерного прямолинейного движения при отсутствии воздействия на него сил. С другой стороны, силы, действующие на тело, изменяют состояние его движения, вызывая ускорение. Взаимодействие этих двух эффектов и является главной темой механики Ньютона.
Другими важными понятиями этого раздела физики есть энергия, импульс, момент импульса, которые могут передаваться между объектами в процессе взаимодействия. Энергия механической системы складывается из ее кинетической (энергии движения) и потенциальной (зависимой от положения тела относительно других тел) энергий. Относительно этих физических величин действуют фундаментальные законы сохранения.
Основы классической механики были заложены Галилеем, а также Коперником и Кеплером при изучении закономерностей движения небесных тел, и долгое время механика и физика рассматривались в контексте астрономических событий.
В своих работах Коперник отмечал, что вычисление закономерностей движения небесных тел может быть значительно упрощен, если отойти от принципов, заложенных Аристотелем, и считать Солнце, а не Землю, отправной точкой для таких вычислений, т.е. осуществить переход от геоцентрической к гелиоцентрической систем.
Идеи гелиоцентрической системы дальше были формализованы Кеплером в его трех законах движения небесных тел. В частности, из второго закона следовало, что все планеты солнечной системы движутся эллиптическими орбитами, имеющие одним из своих фокусов Солнце.
Следующий важный вклад в основание классической механики был осуществлен Галилеем, который, исследуя фундаментальные закономерности механического движения тел, в частности под воздействием сил земного притяжения, сформулировал пять универсальных законов движения.
Но все же лавры основного основателя классической механике относятся Исааку Ньютону, который в своей работе «Математические начала натуральной философии» осуществил синтез тех понятий по физике механического движения, которые были сформулированы его предшественниками. Ньютон сформулировал три фундаментальные законы движения, которые были названы его именем, а также закон всемирного тяготения, который подводил черту под исследованиями Галилеем феномена свободного падения тел. Таким образом, была создана новая, на замену устаревшей Аристотелевой, картина мира базовых его законов.
Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но они становятся некорректными для систем, скорость которых приближается к скорости света, где она заменяется релятивистской механикой, либо для очень малых систем, где действуют законы квантовой механики. Для систем, которые объединяют оба эти свойства, вместо классической механики обеими характеристиками квантовая теория поля. Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также быть адекватной, зато используются методы статистической механики
Классическая механика сохраняет, потому что она, во-первых, гораздо проще в применении, чем остальные теории, и, во-вторых, имеет большие возможности для аппроксимации и применение для очень широкого класса физических объектов, начиная со привычных, таких как волчок или мяч, многих астрономических объектов (планеты, галактики) и совсем микроскопических).
Хотя классическая механика в общих чертах совместима с другими «классическими теориями, такими как классическая электродинамика и термодинамика, имеются некоторые несоответствия между этими теориями, которые были найдены в конце 19 века. Они могут быть решены методами более современной физики. В частности, классическая электродинамика предсказывает, что скорость света постоянна, что несовместимо с классической механикой и привело к созданию специальной теории относительности. Принципы классической механики рассмотрении совместно с утверждениями классической термодинамики, что приводит к парадоксу Гиббса, согласно которому невозможно точно определить величину энтропии и к ультрафиолетовой катастрофе, в которой абсолютно черное тело должно излучать бесконечное количество энергии. Для преодоления этих несоответствий была создана квантовая механика.
Объекты, которые изучаются механикой, называются механическими системами. Задачей механики является изучение свойств механических систем, в частности их эволюции во времени.
Базовый математический аппарат классической механики дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. В классическом формулировке механика строится на трех законах Ньютона.
Далее дается изложение базовых концепций классической механики. Для простоты будем рассматривать только материальную точку объекта, размерами которого можно пренебречь. Движение материальной точки характеризуется несколькими параметрами: ее положением, массой, и приложенными к ней силами.
В реальности, размеры каждого объекта, с которым имеет дело классическая механика, является ненулевыми. Материальные точки, такие, как электрон, подчиняются законам квантовой механики. Объекты ненулевого размера могут испытывать более сложные движения, поскольку их внутреннее состояние может меняться например, мяч может еще и вращаться. Тем не менее, к таким телам результаты, полученные для материальных точек, рассматривая их как совокупности большого количества взаимодействующих материальных точек. Такие сложные тела ведут себя как материальные точки, если их малы в масштабах рассматриваемой задачи.
Радиус-вектор и его производные
Положение объекта материальной точки определяется относительно фиксированной точки в пространстве, которая называется началом координат. Оно может быть задано координатами этой точки (например, в прямоугольной системе координат) или радиус-вектором r, проведенным из начала координат в эту точку. В реальности, материальная точка может двигаться с течением времени, поэтому радиус-вектор в общем случае является функцией времени. В классической механике, в отличие от релятивистской, считается, что течение времени является одинаковым во всех системах отсчета.
Траектория
Траекторией называется совокупность всех положений материальной точки, движущейся в общем случае она является кривой линией, вид которой зависит от характера движения точки и выбранной системы отсчета.
Перемещение
Перемещение это вектор, соединяющий начальное и конечное положение материальной точки.
Скорость
Скорость, или отношение перемещения ко времени, в течение которого оно происходит, определяется как первая производная от перемещения к времени:

В классической механике, скорости можно добавлять и отнимать. Например, если одна машина едет на запад со скоростью 60 км / ч, и догоняет другую, которая движется в том же направлении со скоростью 50 км / ч, то относительно второй машина первая движется на запад со скоростью 60-50 = 10 км / ч. Зато на перспективу быстрые машины, медленнее движется со скоростью 10 км / ч на восток.
Для определения относительной скорости в любом случае применяются правила векторной алгебры для составления векторов скорости.
Ускорение
Ускорение, или скорость изменения скорости это производная от скорости до времени или вторая производная от перемещения к времени:

Вектор ускорения может меняться по величине, так и по направлению. В частности, если скорость уменьшается, иногда ускорение "замедлением, но вообще любую изменению скорости.
Силы. Второй закон Ньютона
Второй закон Ньютона утверждает, что ускорение материальной точки является прямо пропорциональным силе, на нее действует, а вектор ускорения направлен по линии действия этой силы. Иными словами, этот закон связывает силу, которая действует на тело с его массой и ускорением. Тогда второй закон Ньютона выглядит так:

Величина m v называется импульсом. Обычно, масса m не изменяется со временем, и закон Ньютона можно записать в упрощенной форме

Где а ускорение, которое было определено выше. Масса тела m Не всегда с течением времени. Например, масса ракеты уменьшается по мере использования горючего. При таких обстоятельствах, последнее выражение неприменимо, и следует пользоваться полной формой второго закона Ньютона.
Второго закона Ньютона недостаточно для описания движения частицы. Он требует определения той силы, которая на нее действует. Например, типичный выражение для силы трения при движении тела в газе или в жидкости определяется следующим образом:

Где? некоторая константа, которая называется коэффициентом трения.
После того как определены все силы, на базе второго закона Ньютона получим дифференциальное уравнение, называемое уравнением движения. В нашем примере с лишь одной силой, которая действует на частицу, получим:

.

Проинтегрировав, получим:

Где Начальная скорость. Это означает, что скорость движения нашего объекта уменьшается экспоненциально до нуля. Это выражение в свою очередь может быть вновь проинтегровано для получения выражения для радиус-вектора r тела в зависимости от времени.
Если на частицу действуют несколько сил, то они добавляются по правилам сложения векторов.
Энергия
Если сила F действует на частицу, которая в результате этого перемещается на? r, то при этом выполняется работа, равный:

Если масса частицы стала, то тоскуя работы, выполненные всеми силами, из второго закона Ньютона

,

Где Т кинетическая энергия. Для материальной точки определяется как

Для сложных объектов из множества частиц, кинетическая энергия тела равна сумме кинетических энергий всех частиц.
Особый класс консервативных сил может быть выражен градиентом скалярной функции, известной как потенциальная энергия V:

Если все силы, действующие на частицу консервативны, а V полная потенциальная энергия, полученная добавлением потенциальных энергий всех сил, то
Т.е. полная энергия E = T + V сохраняется во времени. Это проявление одного из фундаментальных физических законов сохранения. В классической механике он может быть полезным практически, ведь много разновидностей сил в природе являются консервативными.
Законы Ньютона имеют несколько важных последствий для твердых тел (см. момент импульса)
Существуют также два важных альтернативные формулировки классической механики: механика Лагранжа и гамильтонова механика. Они эквивалентны механике Ньютона, но иногда оказываются полезными для анализа некоторых проблем. Они, как и другие современные формулировки, не используют понятие силы, вместо обращаясь к другим физических величин, таких как энергия.

Основы классической механики

Механика – раздел физики, изучающий законы механического движения тел.

Тело – вещественный материальный объект.

Механическое движение – изменение положения тела или его частей в пространстве с течением времени.

Аристотель представлял такой вид движения как непосредственную перемену телом своего места относительно других тел, поскольку в его физике материальный мир был неразрывно связан с пространством, существовал вместе с ним. Время он считал мерой движения тела. Изменение в дальнейшем взглядов на природу движения привело к постепенному отделению пространства и времени от физических тел. Наконец, абсолютизация пространства и времени Ньютоном вообще вывела их за пределы возможного опыта.

Однако, этот подход позволил к концу XVIII века построить законченную систему механики, называемую теперь классической . Классичность заключается в том, что она:

1) описывает большинство механических явлений в макромире, используя небольшое число исходных определений и аксиом;

2) строго обоснована математически;

3) часто используется в более специфических разделах науки.

Опыт показывает, что классическая механика применима к описанию движения тел со скоростями υ << с ≈ 3·10 8 м/с. Ее основные разделы:

1) статика изучает условия равновесия тел;

2) кинематика – движение тел без учета его причин;

3) динамика – влияние взаимодействия тел на их движение.

Основные понятия механики:

1) Механическая система – мысленно выделенная совокупность тел, существенных в данной задаче.

2) Материальная точка – тело, формой и размерами которого можно пренебречь в рамках данной задачи. Тело может быть представлено в виде системы материальных точек.

3) Абсолютно твердое тело – тело, расстояние между любыми двумя точками которого не меняется в условиях данной задачи.

4) Относительность движения заключается в том, что изменение положения тела в пространстве может быть установлено только по отношению к каким-то другим телам.

5) Тело отсчета (ТО) – абсолютно твердое тело, относительно которого рассматривается движение в данной задаче.

6) Система отсчета (СО) = {ТО + СК + часы}. Начало системы координат (СК) совмещают с какой-нибудь точкой ТО. Часы измеряют промежутки времени.

Декартова СК:

Рисунок 5

Положение материальной точки М описывается радиусом-вектором точки , – ее проекции на оси координат.

Если задать начальный момент времени t 0 = 0, то движение точки М опишется вектор-функцией или тремя скалярными функциями x (t ), y (t ), z (t ).

Линейные характеристики движения материальной точки:

1) траектория – линия движения материальной точки (геометрическая кривая),

2) путь (S ) – расстояние, пройденное вдоль нее за промежуток времени ,

3) перемещение ,

4) скорость ,

5) ускорение .

Любое движение твердого тела можно свести к двум основным видам – поступательному и вращательному вокруг неподвижной оси.

Поступательное движение – такое, при котором прямая, соединяющая любые две точки тела, остается параллельной своему первоначальному положению. Тогда все точки движутся одинаково, и движение всего тела можно описать движением одной точки .

Вращение вокруг неподвижной оси – такое движение, при котором существует прямая, жестко связанная с телом, все точки которой остаются неподвижными в данной СО. Траектории остальных точек – окружности с центрами на этой прямой. В этом случае удобны угловые характеристики движения, которые одинаковы для всех точек тела.

Угловые характеристики движения материальной точки:

1) угол поворота (угловой путь) , измеряемый в радианах [рад], где r – радиус траектории точки,

2) угловое перемещение , модуль которого представляет собой угол поворота за малый промежуток времени dt ,

3) угловая скорость ,

4) угловое ускорение .

Рисунок 6

Связь между угловыми и линейными характеристиками:

, , .

Динамика использует понятие силы , измеряемой в ньютонах (H), как меры воздействия одного тела на другое. Это воздействие является причиной движения.

Принцип суперпозиции сил – результирующий эффект воздействия на тело нескольких тел равен сумме эффектов воздействий каждого из этих тел в отдельности. Величина называется равнодействующей силой и характеризует эквивалентное воздействие на тело n тел.

Законы Ньютона обобщают опытные факты механики.

1-й закон Ньютона . Существуют системы отсчета, относительно которых материальная точка сохраняет состояние покоя или равномерного прямолинейного движения при отсутствии силового воздействия на нее, т.е. если , то .

Такое движение называется движением по инерции или инерциальным движением, и поэтому системы отсчета, в которых выполняется 1-й закон Ньютона, называются инерциальными (ИСО).

2-й закон Ньютона . , где – импульс материальной точки, m – ее масса, т.е. если , то и, следовательно, движение уже не будет инерциальным.

3-й закон Ньютона . При взаимодействии двух материальных точек возникают силы и , приложенные к обеим точкам, причем .

См. также: Портал:Физика

Класси́ческая меха́ника - вид механики (раздела физики , изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный на законах Ньютона и принципе относительности Галилея . Поэтому её часто называют «Ньютоновской механикой ».

Классическая механика подразделяется на:

  • статику (которая рассматривает равновесие тел)
  • кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)
  • динамику (которая рассматривает движение тел).

Существует несколько эквивалентных способов формального математического описания классической механики:

  • Лагранжев формализм
  • Гамильтонов формализм

Классическая механика даёт очень точные результаты, если её применение ограничено телами, скорости которых много меньше скорости света , а размеры значительно превышают размеры атомов и молекул . Обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика , а на тела, размеры которых сравнимы с атомными - квантовая механика . Квантовая теория поля рассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

  1. она намного проще в понимании и использовании, чем остальные теории
  2. в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и иногда даже многих микроскопических объектов, таких как молекулы .

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикой и термодинамикой приводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что несовместимо с классической механикой. В начале XX века это привело к необходимости создания специальной теории относительности . При рассмотрении совместно с термодинамикой, классическая механика приводит к парадоксу Гиббса , в котором невозможно точно определить величину энтропии , и к ультрафиолетовой катастрофе , в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к возникновению и развитию квантовой механики.

Основные понятия

Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:

Основные законы

Принцип относительности Галилея

Основным принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем . Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других .

Законы Ньютона

Основой классической механики являются три закона Ньютона.

Второго закона Ньютона недостаточно для описания движения частицы. Дополнительно требуется описание силы , полученное из рассмотрения сущности физического взаимодействия, в котором участвует тело.

Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы . С более фундаментальной точки зрения существует взаимосвязь закона сохранения энергии и однородности времени , выражаемая теоремой Нётер .

За пределами применимости законов Ньютона

Классическая механика также включает в себя описания сложных движений протяжённых неточечных объектов. Законы Эйлера обеспечивают расширение законов Ньютона на эту область. Понятие угловой момент опирается на те же математические методы, используемые для описания одномерного движения.

Уравнения движение ракеты расширяют понятие скорости, когда импульса объекта меняется со временем, чтобы учесть такой эффект как потеря массы. Есть две важные альтернативные формулировки классической механики: механика Лагранжа и Гамильтонова механика. Эти и другие современные формулировки, как правило, обходят понятие «сила», и делают упор на другие физические величины, такие как энергия или действие, для описания механических систем.

Приведенные выше выражения для импульса и кинетической энергии действительны только при отсутствии значительного электромагнитного вклада. В электромагнетизме, второй закон Ньютона для провода с током нарушается, если не включает в себя вклад электромагнитного поля в импульс системы выраженный через вектор Пойнтинга поделённый на c 2 , где c - это скорость света в свободном пространстве.

История

Древнее время

Классическая механика зародилась в древности главным образом в связи с проблемами, которые возникали при строительстве . Первым из разделов механики, получившим развитие стала статика , основы которой были заложены в работах Архимеда в III веке до н. э. Им были сформулированы правило рычага, теорема о сложении параллельных сил , введено понятие центра тяжести , заложены основы гидростатики (сила Архимеда).

Средние века

Новое время

XVII век

XVIII век

XIX век

В XIX веке развитие аналитической механики происходит в работах Остроградского , Гамильтона , Якоби , Герца и др. В теории колебаний Раусом, Жуковским и Ляпуновым была разработана теория устойчивости механических систем. Кориолис разработал теорию относительного движения, доказав теорему о разложении ускорения на составляющие . Во второй половине XIX века происходит выделение кинематики в отдельный раздел механики.

Особенно значительны в XIX веке были успехи в области механики сплошной среды . Навье и Коши в общей форме сформулировали уравнения теории упругости . В работах Навье и Стокса были получены дифференциальные уравнения гидродинамики с учётом вязкости жидкости. Наряду с этим происходит углубление знаний в области гидродинамики идеальной жидкости: появляются работы Гельмгольца о вихрях, Кирхгофа , Жуковского и Рейнольдса о турбулентности, Прандтля о пограничных эффектах. Сен-Венан разработал математическую модель , описывающую пластические свойства металлов.

Новейшее время

В XX веке интерес исследователей переключается на нелинейные эффекты в области классической механики. Ляпунов и Анри Пуанкаре заложили основы теории нелинейных колебаний. Мещерский и Циолковский провели анализ динамики тел переменной массы. Из механики сплошной среды выделяется аэродинамика , основы которой разработаны Жуковским. В середине XX века активно развивается новое направление в классической механике - теория хаоса . Важными также остаются вопросы устойчивости сложных динамических систем.

Ограничения классической механики

Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но её предсказания становятся некорректными для систем, скорость которых приближается к скорости света , где она заменяется релятивистской механикой или для очень малых систем, где действуют законы квантовой механики. Для систем, которые объединяют оба эти свойства, вместо классической механики применяется релятивистская квантовая теория поля. Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также не может быть адекватной, зато используются методы статистической механики.

Классическая механика является широко применяемой, потому что она, во-первых, гораздо проще и легче в применении, чем перечисленные выше теории, и, во-вторых, имеет большие возможности для аппроксимации и применения для очень широкого класса физических объектов, начиная с привычных, таких как волчок или мяч, до больших астрономических объектов (планеты, галактики) и совсем микроскопических (органические молекулы).

Хотя классическая механика является в целом совместимой с другими «классическими» теориями, такими как классическая электродинамика и термодинамика, имеются некоторые несоответствия между этими теориями, которые были найдены в конце 19 века. Они могут быть решены методами более современной физики. В частности, уравнения классической электродинамики неинвариантны относительно преобразований Галилея. Скорость света входит в них как константа, что означает, что классическая электродинамика и классическая механика могли бы быть совместимы только в одной избранной системе отсчета, связанной с эфиром. Однако, экспериментальная проверка не выявила существование эфира, что привело к созданию специальной теории относительности, в рамках которой были модифицированы уравнения механики. Принципы классической механики также несовместимы с некоторыми утверждениями классической термодинамики, что приводит к парадоксу Гиббса, согласно которому невозможно точно установить энтропию, и к ультрафиолетовой катастрофе, в которой абсолютно черное тело должно излучать бесконечное количество энергии. Для преодоления этих несовместимости была создана квантовая механика.

Примечания

Интернет-ссылки

Литература

  • Арнольд В.И. Авец А. Эргодические проблемы классической механики.. - РХД, 1999. - 284 с.
  • Б. М. Яворский, А. А. Детлаф. Физика для школьников старших классов и поступающих в вузы. - М .: Академия, 2008. - 720 с. - (Высшее образование). - 34 000 экз. - ISBN 5-7695-1040-4
  • Сивухин Д. В. Общий курс физики. - Издание 5-е, стереотипное. - М .: Физматлит , 2006. - Т. I. Механика. - 560 с. - ISBN 5-9221-0715-1
  • А. Н. Матвеев. Механика и теория относительности . - 3-е изд. - М .: ОНИКС 21 век: Мир и Образование, 2003. - 432 с. - 5000 экз. - ISBN 5-329-00742-9
  • Ч. Киттель, У. Найт, М. Рудерман Механика. Берклеевский курс физики. - М .: Лань, 2005. - 480 с. - (Учебники для вузов). - 2000 экз. - ISBN 5-8114-0644-4
  • Ландау, Л. Д. , Лифшиц, Е. М. Механика. - Издание 5-е, стереотипное. - М .:

Механика - это раздел физики, в котором изучается простейшая форма движения материи - механическое движение , которое заключается в изменении с течением времени положения тел или их частей. Тот факт, что механические явления протекают в пространстве и во времени, находит свое отражение в любом законе механики, содержащем явно или неявно пространственно-временные соотношения - расстояния и промежутки времени.

Механика ставит перед собой две основные задачи :

    изучение различных движений и обобщение полученных результатов в виде законов, с помощью которых может быть предсказан характер движения в каждом конкретном случае. Решение этой задачи привело к установлению И. Ньютоном и А. Эйнштейном так называемых динамических законов;

    отыскание общих свойств, присущих любой механической системе в процессе ее движения. В результате решения этой задачи были обнаружены законы сохранения таких фундаментальных величин, как энергия, импульс и момент импульса.

Динамические законы и законы сохранения энергии, импульса и момента импульса представляют собой основные законы механики и составляют содержание данной главы.

§1. Механическое движение: исходные понятия

Классическая механика состоит из трех основных разделов - статики, кинематики и динамики . В статике рассматриваются законы сложения сил и условия равновесия тел. В кинематике дается математическое описание всевозможных видов механического движения безотносительно к тем причинам, которые его вызывают. В динамике исследуется влияние взаимодействия между телами на их механическое движение.

На практике все физические задачи решаются приближенно : реальное сложное движение рассматривается как совокупность простейших движений, реальный объект заменяется идеализированной моделью этого объекта и т.д. Например, при рассмотрении движения Земли вокруг Солнца можно пренебречь размерами Земли. В этом случае описание движения значительно упрощается - положение Земли в пространстве можно определить одной точкой. Среди моделей механики определяющими являются материальная точка и абсолютно твердое тело.

Материальная точка (или частица) - это тело, формой и размерами которого в условиях данной задачи можно пренебречь. Любое тело можно мысленно разбить на очень большое число частей, сколь угодно малых по сравнению с размерами всего тела. Каждую из этих частей можно рассматривать как материальную точку, а само тело - как систему материальных точек.

Если деформации тела при его взаимодействии с другими телами пренебрежимо малы, то его описывают моделью абсолютно твердого тела.

Абсолютно твердое тело (или твердое тело) - это тело, расстояния между любыми двумя точками которого не меняются в процессе движения. Иначе говоря, это тело, форма и размеры которого не изменяются при его движении. Абсолютно твердое тело можно рассматривать как систему материальных точек, жестко связанных между собой.

Положение тела в пространстве может быть определено только по отношению к каким либо другим телам. Например, имеет смысл говорить о положении планеты по отношению к Солнцу, самолета или корабля - по отношению к Земле, но нельзя указать их положения в пространстве безотносительно к какому-либо конкретному телу. Абсолютно твердое тело, которое служит для определения положения интересующего нас объекта, называется телом отсчета. Для описания движения объекта с телом отсчета связывают какую-либо систему координат, например прямоугольную декартову систему координат. Координаты объекта позволяют установить его положение в пространстве. Наименьшее число независимых координат, которые необходимо задать для полного определения положения тела в пространстве, называется числом степеней свободы. Так, например, материальная точка, свободно движущаяся в пространстве, имеет три степени свободы: точка может совершать три независимых движения вдоль осей декартовой прямоугольной системы координат. Абсолютно твердое тело имеет шесть степеней свободы: для определения его положения в пространстве нужны три степени свободы для описания поступательного движения вдоль осей координат и три - для описания вращения относительно этих же осей. Для отсчета времени система координат снабжается часами.

Совокупность тела отсчета, связанной с ним системы координат и множества синхронизированных между собой часов образуют систему отсчета.


В В Е Д Е Н И Е

Физика - наука о природе, изучающая наиболее общие свойства материального мира, наиболее общие формы движения материи, лежащие в основе всех явлений природы. Физика устанавли-вает законы, которым подчиняются эти явления.

Физика изучает также свойства и строение материальных тел, указывает пути практического использования физических законов в технике.

В соответствии с многообразием форм материи и ее движения физика подразделяется на ряд разделов: механика, термоди-намика, электродинамика, физика колебаний и волн, оптика, фи-зика атома, ядра и элементарных частиц.

На стыке физики и других естественных наук возникли новые науки: астрофизика, биофизика, геофизика, физическая хи-мия и др.

Физика является теоретической основой техники. Развитие физики послужило фундаментом для создания таких новых отраслей техники, как космическая техника, ядерная техника, квантовая электроника и др. В свою очередь, развитие технических наук способствует созданию совершенно новых методов физичес-ких исследований, обуславливающих прогресс физики и смежных наук.

ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

I . Механика. Общие понятия

Механика - раздел физики, который рассматривает простей-шую форму движения материи - механическое движение.

Под механическим движением понимают изменение положения изучаемого тела в пространстве со временем относительно неко-торого гола или системы тел, условно считаемых неподвижными. Такую систему тел вместе с часами, в качестве которых может быть выбран любой периодический процесс, называют системой отсчета (С.О.). С.О. часто выбирают из соображений удобства.

Для математического описания движения с С.О. связывают систе-му координат, часто прямоугольную.

Простейшее тело в механике - материальная точка. Это те-ло, размерами которого в условиях денной задачи можно пренебречь.

Всякое тело, размерами которого пренебречь нельзя, рас-сматривают как систему материальных точек.

Механика подразделяется на кинематику , которая занимается геометрическим описанием движения, не изучая его причин, динамику, которая изучает законы движения тел под действием сил, и статику, которая изучает условия равновесия тел.

2. Кинематика точки

Кинематика изучает пространственно-временное перемещение тел. Она оперирует такими понятиями, как перемещение , путь, время t , скорость движения , ускорение.

Линию, которую описывает при своем движении материальная точка, называют траекторией. По форме траектории движения де-лятся на прямолинейные и криволинейные. Вектор , соеди-няющий начальную I и конечную 2 точки, называют перемещением (рис. I.I).

Каждому моменту времени t соответствует свой радиус-вектор
:

Таким образом движение точки мо-жет быть описано векторной функ-цией.

которая определяем векторный способ задания движения, или тре-мя скалярными функциями

x = x (t ); y = y (t ); z = z (t ) , (1.2)

которые называют кинематическими уравнениями. Они определяют задание движения координатным способом.

Движение точки будет также определено, если для каждого момента времени будет установлено положение точки на траекто-рии, т.е. зависимость

Она определяет задание движения естественным способом.

Каждая из указанных формул представляет собой закон дви-жения точки.

3. Скорость

Если моменту времени t 1 соответствует радиус-вектор , а
, то за промежуток
тело получит перемещение
. В этом случае средней скоростью
за t назы-вают величину

, (1.4)

которая по отношению к траектории представляет секущую, про-ходящую через точки I и 2. Скоростью в момент времени t назы-вают вектор

, (1.5)

Из этого определения следует, что скорость в каждой точке траектории направлена по касательной к ней. Из (1.5) следует, что проекции и модуль вектора скорости определятся выражениями:

Если задан закон движения (1.3), то модуль вектора скорости определится так:

, (1.7)

Таким образом, зная закон движения (I.I), (1.2), (1.3), можно вычислить вектор и модуль доктора скорости и, наоборот, зная скорость из формул (1.6), (1.7), можно вычислять коор-динаты и путь.

4. Ускорение

При произвольном движении вектор скорости непрерывно ме-няется. Величина, характеризующая быстроту изменения вектора скорости, называется ускорением.

Если в. момент времениt 1 скорость точки ,а приt 2 - , то приращение скорости составит (Рис.1.2). Среднее ускорение п
ри этом

а мгновенное

, (1.9)

Для проекции и модуля ускорений имеем: , (1.10)

Если задан естественный способ движения, то ускорение можно определить и так. Скорость меняется по величине и по направлению, приращение скорости раскладывают на две величины;
- направленный вдоль (приращение скорости по величине) и
- направленный перпендикулярно (приращение. скорости по направлению), т.е. = + (Рис.I.З). Из (1.9) получаем:

(1.11);
(1.12)

Тангенциальное (касательное) ускорение характеризует быстроту изменения по величине (1.13)

нормальное (центростремительное ускорение) характеризует быстроту изменения по направлению. Для вычисления a n рассмотрим

OMN и MPQ при условии малого перемещения точки по траек-тории. Из подобия этих треугольников находим PQ:MP=MN:OM:

Полное ускорение в этом случае определится так:

, (1.15)

5. Примеры

I. Равнопеременное прямолинейное движение. Это движение с постоянным ускорением(
) . Из (1.8) находим

или
, где v 0 - скорость в момент времениt 0 . Полагая t 0 =0, находим
,
а пройденный путь S из формулы (I.7):

гдеS 0 - постоянная, определяемая из начальных условий.

2. Равномерное движение по окружности. В этом случае скорость меняется только по направлению, то есть
- центростремительное ускорение.

I. Основные понятия

Перемещение тел в пространстве - результат их механического взаимодействия между собой, в результате которого проис-ходит изменение движения тел или их деформация. В качестве мары механического взаимодействия в динамике вводится величина – сила . Для данного тела сила - внешний фактор, а характер движения зависит и от свойства самого тела - податливости оказываемому на него внешнему воздействию или степени инерции те-ла. Мерой инерции тела является его масса т , зависящая от количества вещества тела.

Таким образом, основными понятиями механики являются: дви-жущаяся материя, пространство и время как формы существования движущейся материи, масса как мера инерции тел, сила как мера механического взаимодействия между телами.Соотношения между этими понятиями определяются законам! движения, которые были сформулированы Ньютоном как обобщение и уточнение опытных фактов.

2. Законы механики

1-й закон. Всякое тело сохраняет состояние покоя или равно-мерного прямолинейного движения, пока внешние воздействиянеизменяют этого состояния. Первый закон заключает в себе закон инерции, а также определение силы как причины, нарушающей инерциальное состояние тела. Чтобы выразить его математически, Ньютон ввел понятие количества движения или импульса тела:

(2.1)

тогда , если

2-й закон. Изменение количества движения пропорционально при-ложенной силе и происходит по направлению действия этой силы. Выбрав единицы измерения m и так, чтобы коэффициент пропорциональности был равен единице, получаем

или
(2.2)

Если при движении m = const , то

или
(2.3)

В этом случае 2-й закон формулируют так: сила равна произведению массы тела на его ускорение. Этот закон является основным законом динамики и позволяет по заданным силам я начальным условиям находить закон движения тел. 3-й закон. Силы, с которыми два тела действуют друг на друга, равны и направлены в противоположные стороны, т.е.
, (2.4)

Законы Ньютона приобретают конкретный смысл после того, как указаны конкретные силы, действующие на тело. Например, часто в механике движение тел вызывается действием таких сил: сила тяготения
, где r - расстояние между телами, - гравитационная постоянная; сила тя-жести - сила тяготения вблизи поверхности Земли, P = mg ; сила трения
,где k основе классической механики лежат законы Ньютона. Кинематика изучает...

  • Основы квантовой механики и ее значение для химии

    Реферат >> Химия

    Именно с электромагнитными взаимодействиями связано и существование, и физические свойства атомно-молекулярных систем, - слабое... - тех первоначальных разделов классической теории (механики и термодинамики), на основе которых делались попытки интерпретации...

  • Применение концепций классической механики и термодинамики

    Контрольная работа >> Физика

    Фундаментальной физической теорией, которая имеет высокий статус и в современной физике, является классическая механика , основы ... . Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, ...

  • Основные идеи квантовой механики

    Реферат >> Физика

    Лежит в основе квантово-механического описания микросистем, подобно уравнениям Гамильтона в классической механике . В... идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» ...