Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Числовые множества функция и способы их задания. Числовые функции

Что такое функция. Определение. Соответствия, при которых каждому элементу одного множества сопоставляется единственный элемент другого множества называются функциями. Пишут: у = f(x), x Є X. Переменную х называют независимой переменной или аргументом. Множество всех допустимых значений независимой переменной является областью определения функции и обозначается D(y). Переменную у – зависимой переменной. Множество всех значений зависимой переменной является областью значений функции и обозначается Е(у).


Способы задания функции Существуют 4 способа задания функции. 1. Табличный способ. Удобен тем, что позволяет найти значения функции имеющихся в таблице значений аргумента без вычислений. Х2345 У Аналитический способ. Функция задается одной или несколькими формулами. Этот способ незаменим для исследования функции, установления ее свойств. У=2 х+5, у= х² -5 х+1, у= |х+5|. 3. Графический способ. Функция задается своей геометрической моделью на координатной плоскости. 4. Описательный способ. Удобно использовать тогда, когда задание другими способами затруднительно.


§3 Свойства функции Монотонность: Возрастание; убывание нули функции (значения аргумента, в которых значение Функции равно нулю) непрерывность периодичность четность нечетность Экстремумы: точка максимума, точка минимума выпуклость Наибольшее и наименьшее значения функции Промежутки знакопостоянства (промежутки, в которых функция принимает только положительные или только отрицательные значения)




О. Функция вида у=к/х, где к 0, называется обратной пропорциональностью. График обратной пропорциональности (гипербола) получается из графика функции у=1/х с помощью растяжения (а при к








Функция у = |х| у=|х |= х, если х 0 -х, если х


0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." class="link_thumb"> 11 Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига. 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига.">


Нахождение области определения функции




Множество значений функции 1.у= 2sin²x-cos2x Решение: 2sin²x-cos2x=2sin²x-(1-2sin²x)=4sin²x-1 0 Sin²x 1, -1 4sin²x-1 3 Ответ: -1 у 3 2. у = |cosx| Решение: -1 cosx 1, 0 |cosx| 1, |cosx| 1 1 Ответ: -1 у 1 3. Функция задана графиком. Укажите множество значений этой функции. E(f)=(-2;2] E(f)= [-3;1] E(f)= (-;4]







09.07.2015 11340 0

Цель: обсудить определение функции, способы ее задания.

I. Сообщение темы и цели уроков

II. Повторение материала 9 класса

Различные аспекты этой темы уже рассматривались в 7-9 классах. Теперь необходимо расширить и обобщить сведения о функциях. Напомним, что тема является одной из важнейших для всего курса математики. Различные функции будут изучаться вплоть до окончания школы и далее в высших учебных заведениях. Данная тема вплотную связана с решением уравнений, неравенств, текстовыми задачами, прогрессиями и т. д.

Определение 1. Пусть даны два множества действительных чисел D и Е и указан закон f по которому каждому числу х ∈ D ставится в соответствие единственное числом y ∈ Е (см. рисунок). Тогда говорят, что задана функция у = f (x ) или у(х) с областью определения (О.О.) D и областью изменения (О.И.) Е. При этом величину х называют независимой переменной (или аргументом функции), величину у - зависимой переменной (или значением функции).

Область определения функции f обозначают D (f ). Множество, состоящее из всех чисел f (x ) (область значений функции f ), обозначают E (f ).

Пример 1

Рассмотрим функцию Для нахождения у для каждого значения х необходимо выполнить следующие операции: из величины х вычесть число 2 (х - 2), извлечь квадратный корень из этого выражения и, наконец, прибавить число 3 Совокупность этих операций (или закон, по которому для каждого значения х ищется величина у) и называется функцией у(х). Например, для х = 6 находим Таким образом, для вычисления функции у в данной точке х необходимо подставить эту величину х в данную функцию у(х).

Очевидно, что для данной функции для любого допустимого числа х можно найти только одно значение у (т. е. каждому значению х соответствует одно значение у).

Рассмотрим теперь область определения и область изменения этой функции. Извлечь квадратный корень из выражения (х - 2) можно, только если эта величина неотрицательная, т. е. х - 2 ≥ 0 или х ≥ 2. Находим Так как по определению арифметического корня то прибавим ко всем частям этого неравенства число 3, получим: или 3 ≤ у < +∞. Находим

В математике часто используются рациональные функции. При этом функции вида f (x ) = р(х) (где р(х) - многочлен) называют целыми рациональными функциями. Функции вида (где р(х) и q (x ) - многочлены) называют дробно-рациональными функциями. Очевидно, дробь определена, если знаменатель q (x ) не обращается в нуль. Поэтому область определения дробно-рациональной функции - множество всех действительных чисел, из которого исключены корни многочлена q (x ).

Пример 2

Рациональная функция определена при х - 2 ≠ 0, т. е. x ≠ 2. Поэтому область определения данной функции - множество всех не равных 2 действительных чисел, т. е. объединение интервалов (-∞; 2) и (2; ∞).

Напомним, что объединением множеств А и В называется множество, состоящее из всех элементов, входящих хотя бы в одно из множеств А или В. Объединение множеств А к В обозначается символом А U В. Так, объединением отрезков и (3; 9) является промежуток (непересекающиеся промежутки) обозначают .

Возвращаясь к примеру, можно записать: Так как при всех допустимых значениях х дробь не обращается в нуль, то функция f (x ) принимает все значения, кроме 3. Поэтому

Пример 3

Найдем область определения дробно-рациональной функции

Знаменатели дробей обращаются в нуль при х = 2, х = 1 и х = -3. Поэтому область определения данной функции

Пример 4

Зависимость уже не является функцией. Действительно, если мы хотим вычислить значение у, например, для х = 1, то, пользуясь верхней формулой, найдем: у = 2 · 1 - 3 = -1, а пользуясь нижней формулой, получим: у = 12 + 1 = 2. Таким образом, одному значению x (x = 1) соответствуют два значения у (у = -1 и у = 2). Поэтому эта зависимость (по определению) не является функцией.

Пример 5

Приведены графики двух зависимостей y (x ). Определим, какая из них является функцией.


На рис. а приведен график функции, так как любой точке x 0 соответствует только одно значение у0. На рис. б приведен график какой- то зависимости (но не функции), так как существуют такие точки (например, x 0 ), которым отвечает более одного значения у (например, у1 и у2).

Рассмотрим теперь основные способы задания функций.

1) Аналитический (с помощью формулы или формул).

Пример 6

Рассмотрим функции:

Несмотря на непривычную форму, это соотношение также задает функцию. Для любого значения х легко найти величину у. Например, для х = -0,37 (так как х < 0, то пользуясь верхним выражением), получаем: у(-0,37) = -0,37. Для х = 2/3 (так как х > 0, то пользуемся нижним выражением) имеем: Из способа нахождения у понятно, что любой величине х отвечает только одно значение у.

в) 3х + у = 2у - х2. Выразим из этого соотношения величину у: 3х + х2 = 2у - у или х2 + 3х = у. Таким образом, это соотношение также задает функцию у = х2 + 3х.

2) Табличный

Пример 7

Выпишем таблицу квадратов у для чисел х.

2,25

6,25

Данные таблицы также задают функцию - для каждого (приведенного в таблице) значения х можно найти единственное значение у. Например, у(1,5) = 2,25, y (5) = 25 и т. д.

3) Графический

В прямоугольной системе координат для изображения функциональной зависимости у(х) удобно пользоваться специальным рисунком - графиком функции.

Определение 2. Графиком функции y (x ) называют множество всех точек системы координат, абсциссы которых равны значениям независимой переменной х, а ординаты - соответствующим значениям зависимой переменной у.

В силу такого определения все пары точек (х0, у0), которые удовлетворяют функциональной зависимости у(х), расположены на графике функции. Любые другие пары точек, не удовлетворяющие зависимости y (x ), на графике функции не лежат.

Пример 8

Дана функция Принадлежит ли графику этой функции точка с координатами: а) (-2; -6); б) (-3; -10)?

1. Найдем значение функции у при Так как у(-2) = -6, то точка А (-2; -6) принадлежит графику данной функции.

2. Определим значение функции у при Так как y (-3) = -11, то точка В (-3; -10) не принадлежит графику этой функции.

По данному графику функции у = f (x ) легко найти область определения D (f ) и область значений E (f ) функции. Для этого точки графика проецируют на оси координат. Тогда абсциссы этих точек образуют область определения D (f ), ординаты - область значений E (f ).

Сравним различные способы задания функции. Наиболее полным следует считать аналитический способ. Он позволяет составить таблицу значений функции для некоторых значений аргументов, построить график функции, провести необходимое исследование функции. Вместе с тем табличный способ позволяет быстро и легко найти значение функции для некоторых значений аргумента. График функции наглядно показывает ее поведение. Поэтому противопоставлять различные способы задания функции не следует каждый из них имеет свои преимущества и свои недостатки. На практике используются все три способа задания функции.

Пример 9

Дана функция у = 2х2 - 3х +1.

Найдем: а) y (2); б) y (-3х); в) у(х + 1).

Для того чтобы найти значение функции при каком-то значении аргумента, необходимо подставить это значение аргумента в аналитический вид функции. Поэтому получим:

Пример 10

Известно, что у(3 - х) = 2х2 - 4. Найдем: а) y (x ); б) у(-2).

а) Обозначим буквой z = 3-х, тогда х = 3 - z . Подставим это значение х в аналитический вид данной функции у(3 - х) = 2х2 - 4 и получим: y (3 - (3 - z )) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (3 - z )2 - 4, или y (z ) = 2 · (9 - 6 z + z 2 ) - 4, или y (z ) = 2х2 - 12 z + 14. Так как безразлично, какой буквой обозначен аргумент функции - z , х, t или любой другой, то сразу получим: у(х) = 2х2 - 12х + 14;

б) Теперь легко найти у(-2) = 2 · (-2)2 - 12 · (-2) + 14 = 8 + 24 + 14 = 46.

Пример 11

Известно, что Найдем х(у).

Обозначим буквой z = x - 2, тогда х = z + 2, и запишем условие задачи: или To же условие запишем для аргумента (- z ): Для удобства введем новые переменные a = y (z ) и b = y (- z ). Для таких переменных получим систему линейных уравнений

Нас интересует неизвестная a .

Для ее нахождения используем способ алгебраического сложения. Поэтому умножим первое уравнение на число (-2), второе уравнение - на число 3. Получим:

Сложим эти уравнения: откуда Так как аргумент функции можно обозначать любой буквой, то имеем:

В заключение заметим, что к концу 9 класса были изучены свойства и графики:

а) линейной функции у = кх + m (график - прямая линия);

б) квадратичной функции у = ах2 + b х + с (график - парабола);

в) дробно-линейной функции (график - гипербола), в частности функции

г) степенной функции у = ха (в частности, функции

д) функции у = |х|.

Для дальнейшего изучения материала рекомендуем повторить свойства и графики указанных функций. На следующих занятиях будут рассмотрены основные способы преобразования графиков.

1. Дайте определение числовой функции.

2. Расскажите о способах задания функции.

3. Что называется объединением множеств А и B ?

4. Какие функции называются целыми рациональными?

5. Какие функции называются дробно-рациональными? Как находится область определения таких функций?

6. Что называют графиком функции f (х)?

7. Приведите свойства и графики основных функций.

IV. Задание на уроках

§ 1, № 1 (а, г); 2 (в, г); 3 (а, б); 4 (в, г); 5 (а, б); 6 (в); 7 (а, б); 8 (в, г); 10 ( a ); 13 (в, г); 16 (а, б); 18.

V. Задание на дом

§ 1, № 1 (б, в); 2 (а, б); 3 (в, г); 4 (а, б); 5 (в, г); 6 (г); 7 (в, г); 8 (а, б); 10 (б); 13 (а, б); 16 (в, г); 19.

VI. Творческие задания

1. Найдите функцию у = f (х), если:


Ответы:


2. Найдите функцию у = f (x ) если:

Ответы:


VII. Подведение итогов уроков

Числовой функцией называется такое соответствие между числовым множеством Х и множеством R действительных чисел, при котором каждому числу из множества Х сопоставляется единственное число из множества R. Множество Х называют областью определения функции . Функции обозначают буквами f, g, h и др. Если f – функция, заданная на множестве Х , то действительное число у, соответствующее числу х их множества Х , часто обозначают f(x) и пишут
у = f(x). Переменную х при этом называют аргументом. Множество чисел вида f(x) называют областью значений функции

Функцию задают при помощи формулы. Например, у = 2х – 2. Если при задании функции с помощью формулы ее область определения не указывается, то полагают, что областью определения функции является область определения выражения f(x) .

1. Функция называется монотонной на некотором промежутке А, если она на этом промежутке возрастает или убывает

2. Функция называется возрастающей на некотором промежутке А, если для любых чисел их множества А выполняется условие: .

График возрастающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика увеличиваются (рис. 4).

3. Функция называется убывающей на некотором промежутке А , если для любых чисел их множества А выполняется условие: .

График убывающей функции обладает особенностью: при движении вдоль оси абсцисс слева направо по промежутку А ординаты точек графика уменьшаются (рис. 4).

4. Функция называется четной на некотором множестве Х, если выполняется условие: .

График четной функции симметричен относительно оси ординат (рис. 2).

5. Функция называется нечетной на некотором множестве Х, если выполняется условие: .

График нечетной функции симметричен относительно начала координат (рис. 2).

6. Если функция у = f(x)
f(x) f(x ) ,то говорят, что функция у = f(x) принимает наименьшее значение у = f(x ) при х = x (рис. 2, функция принимает наименьшее значение в точке с координатами (0;0)).



7. Если функция у = f(x) определена на множестве Х и существует такое , что для любого справедливо неравенствоf(x) f(x ) ,то говорят, что функция у = f(x) принимает наибольшее значение у = f(x ) при х = x (рис. 4, функция не имеет наибольшего и наименьшего значений).

Если для данной функции у = f(x) изучены все перечисленные свойства, то говорят, что проведено исследование функции.

Пределы.

Число А называетс пределом ф-ии при х стремящемся к ∞ если для любого Е>0, существует δ (E)>0 такое что при всех х удовлетворяет неравенство |x|>δ выполняется неравенство |F(x)-A|

Число А называется пределом функции при Х стремящемся к Х 0 если для любого Е>0, существует δ (E)>0 такое что при всех Х≠Х 0 удовлетворяет неравенство |X-X 0 |<δ выполняется неравенство |F(x)-A|

ОДНОСТОРОННИЕ ПРЕДЕЛЫ.

При определении предел что Х стремится к Х0 произвольным образом, то есть с любой стороны. Когда Х стремится к Х0, так что он всё время меньше Х0, то тогда предел называется пределом в т. Х0 слева. Или левосторонним пределом. Аналогично определяется и правосторонни предел.

Тема урока: « Определение числовой функции и способы её задания».

Дидактическая цель. Обобщить и систематизировать имеющиеся у учащихся знания о функциях. Дать определения области определения функции и графика функции, а так же рассмотреть способы задания функции.

Воспитательная цель. Познакомить учащихся с причинно-следственными связями на примере развития понятия функции. Идея зависимости величин восходит к древнегреческой науке. Развитие механики и техники в XVI-XVII вв. потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г.Лейбницем (1646-1716). П.Ферма и Р. Декарт показали, как представлять функции аналитически. Декарт ввел в математику понятие переменной величины. Строгое определение функции дал Ию. Бернулли (1667-1748), а затем его ученик, член Петербургской Академии наук Л.Эйлер (1707-1783) ввел обозначение f(x) и объявил понятие функции центральным понятием анализа. Позднее Ж. Фурье (1768-1783), Н.И. Лобачевский (1792-1856), П. Дирихле (1805-1859) и другие внесли большой вклад в развитие понятия функции. Установление функциональной зависимости между величинами иллюстрирует важные философские категории – причины и следствия.

В процессе построения графиков необходимо обращать внимание на правильность выполнения графика, эстетическое оформление, воспитывать при этом аккуратность, внимание, четкость, учить производительно использовать каждую минутку учебного времени, с целью подготовки к ЕГЭ.

Основные знания и умения. Знать: определения числовой функции, графика функции; способы задания функции. Уметь находить область определения и область значения функции, а также выполнять простейшие преобразования графиков функции: растяжение и сжатие вдоль осей координат, сдвигать, вдоль осей координат, зеркальное отображение относительно оси абсцисс.

Обеспечение занятия

ТСО Компьютер, мультимедийный проектор, экран.

Оснащение ТСО. DVD-диски « Алгебра 7-11», «Алгебра 10-11». Программное обеспечение « Графопостроитель».

Вид занятия . Обобщение и систематизация знаний, умений и навыков.

Мотивация познавательной деятельности учащихся.

При изучении и исследовании разнообразных явлений природы, при решении технических задач приходится рассматривать взаимосвязанные переменные величины. В природе не существует изолированных переменных величин, на связанных с другими физическими величинами. Например, пройденный путь является функцией времени. Многие понятия данной темы имеют большое значение для последующего изучения математики. Функции, их свойства и графика являются и объектом изучения, и той непосредственной средой, в которой строятся все основные понятия «математического анализа».

Последовательность изложения материала

    Основные понятия и определения: функции, области определения функции, области значения функции, графика функции.

    Параллельный перенос графика функции вдоль осей координат.

    Растяжение или сжатие графика функции по осям координат.

    Построение графиков функций, аналитическое выражение которых имеет знак модуля.

    Способы задания функции.

I .Повторение опорных знаний учащихся.

Найдите на рисунке и назовите графики функций:

y= ax+b, y= ax 2 +bx+c,

Слайд №1

II Обобщение и систематизация знаний.

1 Основные понятия и определения: функции, области определения функции, области значения функции, графика функции.

Слайд №2

Если даны числовое множество Х и правило f, позволяющее поставить в соответствие каждому элементу х их множества Х определенное число у, то говорят, что задана функция у=f(х) с областью определения Х.

Пишут: у=f(х), х

Для области определения функции используют обозначение D(f).

Переменную х называют независимой переменной или аргументом,

а переменную у – зависимой переменной.

Множество всех значений функции: у=f(х), х называют областью значений функции и обозначают Е(f).

Если дана функция у=f(х) , х и на координатной плоскости хОу отмечены все точки вида (х;у), где х, а у=f(х), то множество этих точек называют графиком функции у=f(х), х.

2 Параллельный перенос графика функции вдоль осей координат.

Слайд №3

Вопрос :

Как параллельно переносить график функции при а>0 и b

Рассмотрим параллельный перенос графика функции вдоль координатных осей на примере функции у=х 2 .

Слайд№4

3 Растяжение или сжатие графика функции по осям координат.

Теперь вспомним как преобразовывается график функции у=f(х), в следующих случаях

у= bf(x), если b>1или 0

y=f(ax), если a>0 или 0

Слайд№5

Как изменятся графики при b>1 и 0

Рассмотрим на примере функции у=
.

Слайд№6

Рассмотрим на примере функции: у=х 2

Слайд№7

4.Построение графиков функций, аналитическое выражение которых имеет знак модуля.

Слайд №8

f (х), при у=
- часть графика верхней полуплоскости и на оси абсцисс без изменения, а вместо части графика в нижней полуплоскости строим симметричную ей относительно оси Ох.

Рассмотрим преобразования графика функции у= f (х), при у= f ( - часть графика в правой полуплоскости и на оси ординат без изменения, а вместо части в левой полуплоскости строим симметричную правой относительно оси Оу.

Слайд №9

5.Способы задания функций.

Работа по учебнику страницы 9, 10 с комментариями учителя.

1. Аналитический способ - задание функции с помощью формулы (или формул). Сюда относится и параметрический способ. Аналитический способ саамы распространенный, основной способ задания функции в математике. Но он недостаточно нагляден и часто требует больших вычислений.

2. Графический способ - задание функции с помощью графика. используется в неуке и технике, причём иногда график бывает единственно доступным способом задания функции, например при пользовании приборами, автоматически записывающими изменение одной величины в зависимости от изменения другой (барограф, термограф, кардиограф и др.)

3.Словесный – задание функции словами.

4. Табличный – задание функции с помощью таблицы. Распространен в науке, технике т т.д. Этот способ определяет функцию не полностью и не дает наглядного изображения характера изменения функции с изменением аргумента.

III Применение знаний при решении примеров и задач.

1. Найти область определение и область значений функции на чертеже

(задания ЕГЭ 2007 года)

Слайд №10

2. Решить в учебнике №1.4(а)

Найдите область определения функции и область значений:

Ответ: D(f)=(-∞;0)
Е(f)= (-∞;3)

3. Решить в учебнике № 1.5(а)

Найдите область определения функции:

Ответ: (-∞;

4. Решить графически уравнение в учебнике №1.16(в) (самостоятельно с последующей проверкой).

6.1. Определение числовой функции 70

7.1. Сужение функции 72

7.2. Способы задания функции 73

7.3. Явно или неявно заданные функции 73

7.4. Параметрически заданные функции 75

7.5. График функции 77

7.6. Примеры построения графиков функций 78

7.7. Упражнения для самостоятельной работы 83

Вопросы для самопроверки 85

Глоссарий 85

      1. Определение числовой функции

Обозначения: или
или
или
или
.

где x - это независимая переменная, или аргумент;y - это зависимая переменная, или функция.

Если обозначить через

X – множество числовых значений, которые может принимать переменнаяx ,

Y – множество числовых значений, которые принимает переменнаяy ,

то функциональная зависимость между переменными x иy здесь задает отображение числового множестваX на числовое множествоY , при котором каждому элементу
ставится в соответствие единственный элемент множестваY (рис. 40).

Рис. 40

В отличие от более общего определения функции как отображения множеств, состоящих из элементов любой природы, числовая функция задает отображение множества X , элементами которого являются числа, на множествоY , элементами которого тоже являются числа. Кроме того, далее будем считать, что множествоY - это есть множество значений функции, так что отображение
является сюръекцией.

МножествоX задания функции и множествоY значений функции для числовых функций традиционно называютобластью определения функции (ООФ) иобластью значений функции (ОЗФ) .

Значение функции в точке

Если задано отображение множеств функцией
, то элементы множествX иY называются точками. Символом
обозначается при этом как сама функция, так и элемент
, соответствующий элементуx при этой функциональной зависимости.

Если x 0 - это фиксированное значение аргументаx , то значение функции в точкеx 0 обозначается следующими символами:

или
или
или
.

Например,

;



,
.

      1. Сужение функции

Если есть функция
и рассматривается некоторое подмножествоЕ множестваХ , то отображение
называетсясужением функции f на множество Е .

Пример 1 (сужение функций)

1)
,
- это есть сужение функции
,
на множество
;

2) любая последовательность
есть сужение функции
на множество натуральных чисел; например,
– это есть сужение функции
,
на множество.

Наряду с понятием сужения функции существует и понятие расширения функции.

Пример 2 (расширение функций)

1)
; от этой функции можно перейти к её расширению на множество
:
;

2) от функции
можно перейти к её расширению на множество
, если рассматривать её значения на множестве комплексных чисел, где возможно извлечение корня квадратного из отрицательного числа.

      1. Способы задания функции

1.Аналитический способ задания функции - функция задается математической формулой, связывающей аргумент и функцию. По этой формуле для каждого возможного значения аргумента можно вычислить соответствующее значение функции. При этом нужно различать:

    явное задание функции,

    неявное задание функции,

    параметрическое задание функции.

2.Табличный способ задания функции - используется для функций, заданных на дискретном конечном множестве значений аргумента; записывается обычно в виде следующей таблицы:

3.Графический способ задания функции - задается множество точек координатной плоскости, координаты которых являются соответствующими друг другу значениями аргумента и функции.

4.Описательный способ задания функции – функциональная зависимость описывается словами. Например,
, где- этоцелая часть x , которая определяется как наибольшее целое число, не превышающееx .