Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Закон Максвелла о распределении молекул по скоростям. Опыт Штерна. Распределение Больцмана. Опытное определение постоянной Авогадро. Функция распределения Максвелла-Больцмана. Барометрическая формула

Распределения Максвелла и Больцмана. Явления переноса

План лекции:

1. Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

2. Распределение Больцмана.

3. Средняя длина свободного пробега молекул.

4. Явления переноса:

а).диффузия;

б).внутреннее трение (вязкость);

в).теплопроводность.

1. Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

Молекулы газа движутся хаотически и в результате столкновений скорости их меняются по величине и направлению; в газе имеются молекулы как с очень большими, так и с очень малыми скоростями. Можно поставить вопрос о числе молекул, скорости которых лежат в интервале от и для газа в состоянии термодинамического равновесия в отсутствии внешних силовых полей. В этом случае устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется статистическому закону, теоретически выведенному Максвеллом.

Чем больше общее число молекул N, тем большее число молекул DN будет обладать скоростями в интервале оти;чем больше интервал скоростей , тем у большего числа молекул значение скоростей будет лежать в указанном интервале.

Введем коэффициент пропорциональности f(u) .

, (1)

где f(u) называется функцией распределения, которая зависит от скорости молекул и характеризует распределение молекул по скоростям.

Если вид функции известен, можно найти число молекул , скорости которых лежат в интервале от до.

С помощью методов теории вероятности и законов статистики Максвелл в 1860г. теоретически получил формулу, определяющую число молекул , обладающих скоростями в интервале от до.

, (2)

- распределение Максвелла показывает, какая доля общего числа молекул данного газа обладает скоростями в интервале от до.

Из уравнений (1) и (2) следует вид функции :

- (3)

функция распределения молекул идеального газа по скоростям.

Из (3) видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0 ) и температуры.

Наиболее часто закон распределения молекул по скоростям записывают в виде:

График функции асимметричен (рис. 1). Положение максимума характеризует наиболее часто встречающуюся скорость, которая называется наиболее вероятной. Скорости, превышающие u в , встречаются чаще, чем меньшие скорости.

- доля общего числа молекул, обладающих скоростями в этом интервале.

S общ. = 1.

С повышением температуры максимум распределения сдвигается в сторону больших скоростей, а кривая становится более пологой, однако площадь под кривой не изменяется, т.к. S общ. = 1 .

Наиболее вероятной называют скорость, близкой к которой оказываются скорости большинства молекул данного газа.

Для её определения исследуем на максимум.

4 ,

, .

Ранее было показано, что

, ,

=> .

В МКТ используют также понятие средней арифметической скорости поступательного движения молекул идеального газа.

- равна отношению суммы модулей скоростей всех молекул к

числу молекул.

.

Из сравнения видно (рис.2), что наименьшей является u в .

2. Распределение Больцмана.

Два фактора - тепловое движение молекул и наличие поле тяготения Земли приводят газ в состояние, при котором его концентрация и давление убывают с высотой.

Если бы не было теплового движения молекул атмосферного воздуха, то все они сосредоточились бы у поверхности Земли. Если бы не было тяготения, то частицы атмосферы рассеялись бы по всей Вселенной. Найдем закон изменения давления с высотой.

Давление столба газа определяется формулой.

Поскольку с увеличением высоты давление уменьшается,

где r плотность газа на высоте h .

Найдем p из уравнения Менделеева- Клапейрона

или.

Проведем расчет для изотермической атмосферы, считая, что Т=const (не зависит от высоты).

.

при h=0 , , ,

, , ,

Барометрическая формула, определяет давление газа на любой высоте.

Получим выражение для концентрации молекул на любой высоте.

где - потенциальная энергия молекулы на высоте h .

Распределение Больцмана во внешнем потенциальном поле.

Следовательно, распределение молекул по высоте есть их распределение по энергиям. Больцман доказал, что это распределение справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Из распределения Больцмана следует, что молекулы располагаются с большей концентрацией там, где их потенциальная энергия меньше.

Распределение Больцмана - распределение частиц в потенциальном силовом поле.

3. Средняя длина свободного пробега молекул.

Вследствие хаотического теплового движения молекулы газа непрерывно сталкиваются друг с другом, проходят сложный зигзагообразный путь. Между 2-мя столкновениями молекулы движутся равномерно прямолинейно.

М инимальное расстояние, на которое сближаются центры 2-х молекул при соударении, называется эффективным диаметром молекулы d (рис. 4).

Величина называется эффективным сечением молекулы.

Найдем среднее число столкновений молекулы однородного газа в единицу времени. Столкновение произойдёт, если центры молекул сблизятся на расстояние, меньшее или равное d . Предполагаем, что молекула движется со скоростью , а остальные молекулы покоятся. Тогда число столкновений определяется числом молекул, центры которых находятся в объёме, представляющем собой цилиндр с основанием и высотой, равной пути, пройденном молекулой за 1с, т.е. .

Распределение Максвелла (распределение молекул газа по скоростям). В равновесном состоянии параметры газа (давле­ние, объем и температура) остаются неизменными, однако микро­состояния - взаимное расположение молекул, их скорости - не­прерывно изменяются. Из-за огромного количества молекул прак­тически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной слу­чайной величиной, указать распределение молекул по скоростям.

Выделим отдельную молекулу. Хаотичность движения позволяет, например, для проекции скорости x молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности записывается следующим образом:

где т 0 - масса молекулы, Т - термодинамическая температура газа, k - постоянная Больцмана.

Аналогичные выражения могут быть получены для f ( у ) иf ( z ).

На основании формулы (2.15) можно записать вероятность то­го, что молекула имеет проекцию скорости, лежащую в интервалеот x до x + d х :

аналогично для других осей

Каждое из условий (2.29) и (2.30) отражает независимое событие. Поэтому вероятность того, что молекула имеет скорость, проекции которой одновременно удовлетворяют всем условиям, можно найти по теореме умножения вероятностей [см. (2.6)]:

Используя (2.28), из (2.31) получаем:

Отметим, что из (2.32) можно получить максвелловскую функ­цию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

(2.33)

и вероятность того, что скорость молекулы имеет значение, лежа­щее в интервале от до + d :

График функции (2.33) изображен на рисунке 2.5. Скорость, соответствующую максимуму кривой Максвелла, называют наивероятнейшей в. Ее можно определить, используя условие максимума функции:

или

Среднюю скорость молекулы (математическое ожидание) мож­но найти по общему правилу [см. (2.20)]. Так как определяется среднее значение скорости, то пределы интегрирования берут от 0 до  (математические подробности опущены):

где М = т 0 N A - молярная масса газа, R = k N A - универсальная газовая постоянная, N A - число Авогадро.

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и распределение молекулпо видоизменяется (рис. 2.6; Т 1 < Т 2 ). Распределение Максвелла позволяет вычислить число моле­кул, скорости которых лежат в определенном интервале. Полу­чим соответствующую формулу.

Так как общее число N молекул в газе обычно велико, то веро­ятность dP может быть выражена как отношение числа dN моле­кул, скорости которых заключены в некотором интервале d , к общему числу N молекул:

Из (2.34) и (2.37) следует, что

Формула (2.38) позволяет определить число молекул, скорости которых лежат в интервале от и: до i> 2 . Для этого нужно проинтег­рировать (2.38):

либо графически вычислить площадь криволинейной трапеции в пределах от 1 до 2 (рис. 2.7).

Если интервал скоростей d достаточно мал, то число молекул, скорости которых соответствуют этому интервалу, может быть рассчитано приближенно по формуле (2.38) или графически как площадь прямоугольника с основаниемd .

На вопрос, сколько молекул имеют скорость, равную како­му-либо определенному значению, следует странный, на первый взгляд, ответ: если совершенно точно задана скорость, то интер­вал скоростей равен нулю(d = 0) и из (2.38) получаем нуль, т. е. ни одна молекула не имеет скорости, точно равной наперед задан­ной. Это соответствует одному из положений теории вероятнос­тей: для непрерывной случайной величины, каковой является скорость, невозможно «угадать» совершенно точно ее значение, которое имеет по крайней мере хотя бы одна молекула в газе.

Распределение молекул по скоростям подтверждено различны­ми опытами.

Распределение Максвелла можно рассматривать как распреде­ление молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Распределение Больцмана. Если молекулы находятся в ка­ком-либо внешнем силовом поле, например гравитационном поле Земли, то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих не­которым определенным значением потенциальной энергии.

Распределение частиц по потенциальным энергиям в си­ ловых полях -гравитационном, электрическом и др. -называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле­кул от высотыh над уровнем Земли или от потенциальной энер­гии молекулы mgh :

Выражение (2.40) справедливо для частиц идеального газа. Графи­чески эта экспоненциальная зависимость изображена на рис. 2.8.


Такое распределение молекул в поле тяготения Земли можно ка­чественно, в рамках молекулярно-кинетических представлений, объяснить тем, что на молекулы оказывают влияние два противо­положных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическоедвижение, стремящееся равномерно разбросать молекулы по всему возможному объему.

В заключение полезно заметить некоторое сходство экспонен­циальных членов в распределениях Максвелла и Больцмана:

В первом распределении в показателе степени отношение кине­тической энергии молекулы к kT , во втором - отношение потен­циальной энергии к kT .

Максвелл

В состоянии теплового равновесия, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной . Это объясняется тем, что в газе, устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла.

рис.1 рис. 2 Распределение Максвелла описывается некоторой функцией f(u), называемой функ­ци­ей распределения молекул по скоростям. , где N – общее число молекул, dN(u)- число молекул, скорости которых принадлежат интервалу скоростей от u до u + du. Функция Максвелла f(u) равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей. Явный вид функции f(u) был получен теоретически Максвеллом . функции распределения-рис.1. Из графика следует, что функция распределения стремится к нулю при u®0 и u®¥ и проходит через максимум при некоторой скорости u В, называемой наиболее вероятной скоростью. Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно u В.Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f(u). .На рис.2 показано смещение u В с измен-ем темп-ры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла . Знание функции распределения молекул газа по скоростям позволяет вычислять средние значения любых функций скорости, в частности средней арифметической скорости . .

Больцман

Тепловое движ-е частиц тела приводит к тому, что положение их в пространстве изменяется случайным образом. Поэтому можно ввести функцию распределения частиц по координатам, определяющую вероятность обнаружения частицы в том или ином месте пространства. где -плотность вероятности т.е. вероятность обнаружения частицы в единичном объеме вблизи точки с радиус-вектором r. При отсутствии внешних силовых полей существует равномерное распределение частиц идеального газа по координатам, при этом функция распределения ,где n-концентрация частиц, N-полное число частиц газа.Если внешнее силовое поле является потенциальным, то концентрация частиц вблизи точки пространства с радиус-вектором r , зависит от потенциальной энергии частиц в данном месте. где n o -концентрация частиц в том месте, где E p =0.В этом случае вероятность .Этот закон называется распределением Больцмана . Для идеального газа давление связано с концентрацией соотношением Р=nkT. В поле земного тяготения концентрация изменяется с высотой над поверхностью Земли и, если газ находится в равновесном состоянии при температуре Т, то измен-е давления с высотой происходит по закону .- барометрическая формула .

Билет

1) Кинематика материальной точки. Система отсчета, радиус – вектор, перемещение, путь, скорость, ускорение

Кинематика материальной точки - раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Система отсчета – Совокупность неподвижных друг относительно друга тел, по отношению к которым рассматривается движение и отсчитывающих время часов.
Радиус-вектор - Вектор, задающий положения точки в пространстве (например, гильбертовом или векторном) относительно некоторой заранее фиксированной точки
Перемещение - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта.
Путь - это длина траектории движения тела.
Перемещение - это отрезок, соединяющий начальное и конечное положение тела.
Скорость – Быстрота перемещения тела и направление в котором движется частица в каждый момент времени.
Ускорение – векторная величина, характеризующая быстроту изменения скорости движущегося тела по величине и направлению.

2) Волны. Общая характеристика волновых процессов. Уравнение плоской волны. Фазовая и групповая скорости волн

Волны – Бывают два вида волн: Продольные и поперечные. Если колебательный процесс перпендикулярен направлению распространению волны – поперечные. Если колебание вдоль – продольные.

Продольные волны
- колебания среды происходят вдоль направления распространения волн, при этом возникают области сжатия и разрежения среды.
Поперечные волны - колебания среды происходят перпендикулярно направлению их распространения, при этом происходит сдвиг слоев среды.

Уравнение плоской волны -
Фазовая скорость волны - скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве
вдоль заданного направления.
Групповая скорость - определяет скорость и направление переноса энергии волнами

Билет

1) Прямолинейное и криволинейное движение. Тангенциальное и нормальное ускорения

Прямолинейное движение - механическое движение, при котором вектор перемещения ∆r не меняется по направлению, его модуль равен длине пути, пройденного телом
Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Нормальное ускорение - векторная величина, характеризующая быстроту изменения скорости движущегося тела по величине и направлению.


2) Принципы относительности Галилея, преобразования Галилея.

Принцип относительности Галилея - гласит, что все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.
Преобразования Галилея - Преобразования Галилея опираются на принцип относительности Галилея, который подразумевает одинаковость времени во всех системах отсчета («абсолютное время»)

Билет

1) Кинематика вращательного движения

Если в процессе движения абсолютно твердого тела его точки А и В остаются неподвижными, то и любая точка С тела, находящаяся на прямой АВ, также должна оставаться неподвижной. В противном случае расстояния АС и ВС должны были бы изменяться, что противоречило бы предположению об абсолютной твердости тела. Поэтому движение твердого тела, при котором две его точки Аи В остаются неподвижными, называют вращением тела вокруг неподвижной оси, а неподвижную прямую АВ называют осью вращения.

Рассмотрим произвольную точку М тела, не лежащую на оси вращения АВ. При вращении твердого тела расстояния М А и МВ и расстояние ρ точки М до оси вращения должны оставаться неизменными. Таким образом, все точки тела, вращающегося вокруг неподвижной оси, описывают окружности, центры которых лежат на оси вращения, а плоскости перпендикулярны этой оси. Движение абсолютно твердого тела, закрепленного в одной неподвижной точке, называют вращением тела вокруг неподвижной точки - центра вращения. Такое движение абсолютно твердого тела в каждый момент времени можно рассматривать как вращение вокруг некоторой оси, проходящей через центр вращения и называемой мгновенной осью вращения тела. Положение мгновенной оси относительно неподвижной системы отсчета и самого тела с течением времени может изменяться.

2) Опыт Майкельсона. Постулаты СТО. Преобразования Лоренца, следствия из преобразований Лоренца

Опыт Майкельсона - физический опыт, поставленный Альбертом Майкельсоном на своём интерферометре в 1881 году, с целью измерения зависимости скорости света от движения Земли относительно эфира. Под эфиром тогда понималась среда, аналогичная объёмно распределённой материи, в которой распространяется свет подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательный - смещение полос не совпадают по фазе с теоретическими, но колебания этих смещений только немного меньше теоретических. Существование эфира опровергнуто.
1) все явления природы протекают абсолютно одинаково во всех инерциальных системах отсчета.
2) С – величина постоянная и не зависит от скорости движения инсточника и приемника света
3) с позиции 2 постулата легко доказать что события одновременны в одной системме отсчета являются неодновременными в другой системе отсчета

Билет

1) Понятие массы, силы, импульса.

Импульс – Произведение массы тела на его скорость.
Масса – это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях – значительно медленнее
Сила – это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую причину: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной.

2) Сложение скоростей. Пространственно-временной интервал

При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.
В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:
Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей.
Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

Билет

1) Законы Ньютона. Инерциальные и неинерциальные системы отсчета. Силы инерции.

Законы Ньютона - три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел.

1) Если на тело не действует внешняя сила, то тело находится в состоянии покоя или равномерного прямолинейного движения.
2) F=ma Ускорение тела прямо пропорционально равнодействующей силе и обратно пропорционально его массе
3) Сила действия равна силе противодействия F1 = - F2

Инерциальная система отсчета (ИСО) - система отсчета, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся в них прямолинейно и равномерно или покоятся в них. Только в этих системах выполняются законы Ньютона.

Неинерциальная система отсчета - произвольная система отсчета, не являющаяся инерциальной. Всякая система отсчета, движущаяся с ускорением относительно инерциальной, является неинерциальной.

Сила инерции , векторная величина, численно равная произведению массы т материальной точки на ее ускорение w и направленная противоположно ускорению. При криволинейном движении С. и. можно разложить на касательную, или тангенциальную составляющую J t направленную противоположно касательному ускорению w t , и на нормальную, или центробежную составляющуюJ n , направленную вдоль главной нормали к траектории от центра кривизны; численно J t = nw t , J n =mv 2 / r, где v - скорость точки, r - радиус кривизны траектории. При изучении движения по отношению к инерциальной системе отсчёта С. и. вводят для того, чтобы иметь формальную возможность составлять уравнения динамики в форме более простых уравнений

2) Импульс. Закон движения в релятивистской динамике. Энергия, взаимосвязи массы и энергии. Законы сохранения в СТО.

Релятивистский закон сложения скоростей тела и скорости движущейся системы в одном

где u " – скорость движения тела в движущейся системе отсчета; v – скорость движущейся системы K " относительно неподвижной системы K ;
u – скорость тела относительно неподвижной системы отсчета K (рис. 1).

Релятивистское замедление времени Время t 0 , отсчитываемое по часам, покоящимся относительно данного тела, называется собственным временем . Оно всегда меньше времени, измеренного по движущимся часам: t 0 < t .

Релятивистское сокращение длины Поперечные размеры движущегося стержня не изменяются. Линейный размер стержня l 0 в той системе отсчета, где он покоится, называется собственной длиной. Эта длина максимальна: l 0 > l .

Импульс движущегося тела (релятивистский импульс ):

Полная энергия тела или системы тел:

6 Билет
1) Закон сохранения импульса. Центр масс. Движение центра масс.

Закон сохранения импульса - В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения
импульса. Он является следствием из второго и третьего законов Ньютона.

P – Импульс системы; F - равнодействующая всех сил, действующих на частицы системы

Центр масс - геометрическая точка, характеризующая движение тела или системы частиц как целого.
Теорема о движении центре масс (центра инерции) системы - общая проблема динамики. что ускорение центра масс механической системы не зависит от внутренних сил, действующих на тела системы, и связывает это ускорение с внешними силами, действующими на систему. Центр масс движется так, как двигалась бы материальная точка, масса которой равна массе системы, под действием силы, равной сумме всех внешних сил, действующих на систему. ma=(сумма F)

2) Термодинамические параметры. Идеальный и реальный газы. Уравнение состояния идеального и реального газов.

Термодинамическими величинами называют физические величины, применяемые при описании состояний и процессов в термодинамических системах.

1) Температура - физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.
2) Давление - это нормальная к по­верхности (перпендикулярная) сила, действующая на единицу площади: р = F/A.
3) Объём - количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами.
4) Энтропия – степень разупорядоченности системы. Самопроизвольно в природе все процессы идут в одну сторону: в сторону роста энтропии. Св-ва (или растет или не меняется; это функция состояния; энтропия системы тел складывается из энтропии тел, входящих в систему; внутренняя энтропия = свободная энергия + связанная энергия)

Идеальный газ
– газ в котором можно пренебречь взаимной потенциальной энергией молекул и собственным объемом молекул.
В реальных газах плотность настолько велика, что нельзя пренебречь взаимной потенциальной энергией. Собственный объем молекул тоже играет роль. В качестве эксперимента можно сделать следующее: берем баллон помещаем туда идеальный газ, очень медленно сжимаем. При этом температура должна быть постоянной за счет теплообмена с окружающей средой.
Соотношение между давлением и объемом подчиняется закону Бойля-Мариота. Давление обратно пропорционально объему.
Если увеличить концентрацию, то взаимное притяжение увеличится. Потенциальной энергией нельзя пренебречь
(газ реальный ). Между давлением и объемом нет обратно пропорциональной зависимости.

Билет

1)Момент инерции, момент силы и момент импульса. Теорема Штейнера

Моментом инерции системы относительно оси вращения называется физическая величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.
Если известен момент инерции тела относительно оси, проходящей через его центр масс, момент инерции относительно любой другой оси параллельной данной, определяется с помощью теоремы Штейнера: момент инерции тела І относительно параллельной оси вращения равен моменту инерции І с относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями

Моментом силы относительно неподвижной точки O называется псевдовекторная величина равная векторному произведению радиус-вектора , проведенному из точки O в точку приложения силы, на силу

Модуль момента силы :

Моментом импульса твердого тела относительно неподвижной оси Z называется скалярная величина равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси Z.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц.

Момент ипульса - характеризует количество вращательного движения. Момент импульса материальной точки относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

L=r×p,
где r радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, p - импульс частицы.

2) Внутренняя энергия идеального и реального газов.


Исходя из определения идеального газа, в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул.

Билет

1) Основное уравнение динамики вращательного движения. Закон сохранения момента импульса.

2) Степени свободы молекул. Теорема равнораспределения энергии по степеням свободы.


степеней свободы молекул
- число независимых координат, которые необходимо задать, чтобы однозначно определить положение этого объекта относительно рассматриваемой системы отсчета.

а- одноатомной (3), б- двухатомной(5), в- трехатомной(6).

Среднюю кинетическую энергию движения молекулы идеального газа можно определить по формуле: iчисло независимых величин, определенных положением тела в пространстве.

У любого тела при поступательном движении три степени свободы. На каждую степень свободы статистической системы приходится одна и та же энергия, равная . ΣƩ

В этом состоит суть теоремы о равнораспределении тепловой энергии по степеням свободы.

Для одноатомных

Для двухатомных – 2 степени свободы. Колебания степеней свободы совершаются при значительном росте температуры, т.к. ослабевают межатомные связи и усиливаются колебания внутри молекул.

Для самой большого увеличения температуры

Билет

1) Работа постоянной и переменной силы. Кинетическая энергия тела, участвующего в поступательном и вращательном движениях.

Работа постоянной силы. Для характеристики эффективности силового воздействия на тело используется величина, называемая механической работой. Пусть под действием постоянной силы F частица произвольным образом переместилась из положения 1 в положение 2. Работой силы F на перемещении ∆r называется скалярная величина, определяемая следующим соотношением: Работа постоянной силы равняется скалярному произведению силы на перемещение.


Единица измерения работы - Джоуль. 1 Дж = 1 Н·м.
Работа переменной силы

Работа переменной силы. В случае движения под действием переменной силы величина работы рассчитывается следующим образом. Всю траекторию мысленно разбивают на отдельные участки такой малой длины |dr |, что действующую на них силу можно считать постоянной (см. рис. 7.2). Проекция силы на направление вектора элементарного перемещения dr представляет собой ее тангенциальную составляющую. Следовательно, элементарную работу на перемещении dr можно рассчитать с помощью соотношения.

2) Первое начало термодинамики и его применения к изопроцессам. Адиабатический процесс

Изопроцессы - процессы, протекающие при неизменном значении одного из параметров.

Изотермический процесс (T = const, следовательно ΔU = 0).
По первому закону термодинамики: Q = A".
Газ совершает работу A" за счет подводимого тепла Q (A">0, Q>0).
Совершение работы внешними силами A (сжатие газа) требует отвода тепла Q от газа для сохранения его температуры (A>0, Q<0).

Изохорный процесс (V = const, следовательно A = 0).
По первому закону термодинамики: ΔU = Q.
Нагревание газа в закрытом сосуде приводит к увеличению его внутренней энергии U (температуры) (Q>0, ΔU>0).
Охлаждение газа в закрытом сосуде приводит к уменьшению его внутренней энергии U (температуры) (Q<0, ΔU<0).

Изобарный процесс (p = const).
По первому закону термодинамики: Q = ΔU + A".
Подводимое к газу тепло Q частично идет на увеличение внутренней энергии U, а частично на совершение работы газом A" (Q>0, ΔU>0, A">0).
Работа внешних сил A при изобарном сжатии газа требует отвода тепла Q от газа, одновременно уменьшается его внутренняя энергия U (Q<0, ΔU<0, A>0).

Адиабатный процесс - процесс, протекающий без теплообмена с окружающей средой (Q = 0).
По первому закону термодинамики: ΔU = A.
Вся работа внешних сил А идет только на увеличение внутренней энергии газа (A>0, ΔU>0).
Работа газа А" совершается только за счет потери внутренней энергии газа (A">0, ΔU<0).

Билет

1) Потенциальная энергия. Потенциальная энергия сжатой пружины, тела в поле тяготения.

Потенциальная энергия - скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении. Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы ] . Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в Международной системе единиц (СИ) является джоуль.

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения.

Потенциальная энергия тела в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где - масса тела, - ускорение свободного падения, - высота положения центра масс тела над произвольно выбранным нулевым уровнем.

2) Работа сил тяготения, связь силы и потенциальной энергии. Работа газа в изопроцессах.

Пространство, в котором действуют консервативные силы, называется потенциальным полем. Каждой точке потенциального поля соответствует некоторое значение силы F, действующей на тело, и некоторое значение потенциальной энергии U. Значит, между силой F и U должна быть связь, с другой стороны, dA = –dU, следовательно Fdr=-dU, отсюда:

Проекции вектора силы на оси координат:

Вектор силы можно записать через проекции: , F = –grad U, где .

В изохорном процессе (V = const) газ работы не совершает, A = 0.

В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением.

Мы установили функцию, описывающую распределение молекул по скоростям (распределение Максвелла), и зависимость, характеризующую распределение молекул по значениям потенциальной энергии (распределение Больцмана). Обе зависимости можно объединить в одно обобщенное распределение.

Рассмотрим бесконечно малый объем dV газа, расположенный в точке с радиусом-вектором в большой системе, представляющей идеальный газ при постоянной температуре во внешних силовых полях. Число молекул в выделенном объеме есть n( ) d 3 r. Поскольку объем невелик, в его пределах плотность частиц можно считать постоянной. Это означает, что выполнено условие справедливости распределения Максвелла. Тогда для числа молекул dN , имеющих скорости от v до v + dv и находящихся в объеме d 3 r , в результате объединения зависимостей (3.11) и (3.27), получаем следующую формулу:

Но концентрация молекул n(r) зависит от расположения этого объема во внешних силовых полях:

где n 0 - концентрация молекул в точке, где Е p = 0 . Тогда

Поскольку выражение

представляет собой полную энергию частицы во внешнем потенциальном силовом поле, мы приходим к обобщенному распределению Максвелла - Больцмана по энергиям молекул:

где N - полное число частиц в системе, a dN - число частиц с координатами между r и r + dr и (одновременно) со скоростями между v и v + dv.

Средняя энергия квантового осциллятора. Распределение Максвелла - Больцмана было получено в классической физике, но оно оказалось справедливым и в квантовой механике, где были подвергнуты пересмотру многие казавшиеся незыблемыми положения. В качестве примера рассмотрим задачу о грузе массой т, закрепленном на конце пружинки с жесткостью k. Уравнение движения хорошо известно, и его решением являются гармонические колебания тела с круговой частотой

Классическая энергия системы, моделирующей колебания атомов в молекуле дается формулой (3.62) и может принимать любые значения в зависимости от амплитуды колебаний. Как нам известно из квантовой механики, энергия колебаний квантуется , то есть принимает дискретный ряд значений, определяемых формулой:

В соответствии с общими принципами статистической физики вероятность Р n найти осциллятор в состоянии, характеризуемом неким значением n колебательного квантового числа, определяется формулой

где А - нормировочная постоянная. Для ее определения надо воспользоваться условием нормировки вероятности

Для этого в известную формулу для геометрической прогрессии

подставим значение

Получаем тогда вместо (2)

откуда следует выражение для постоянной А. Используя его в выражении (1), приходим к вероятности

Видно, что чем больше значение квантового числа n, тем меньше вероятность обнаружить осциллятор в таком состоянии. Чем выше температура, тем большие значения n становятся практически значимыми для системы. При

к нулю стремятся все вероятности Р n с n > 1 , и лишь

Иными словами, при нулевой температуре нет тепловых возбуждений, и осциллятор совершает «нулевые колебания» - находится в основном состоянии с наименьшей энергией

Распределение осцилляторов по энергиям в зависимости от температуры системы показано на рис. 3.9

Рис. 3.9. Примерное распределение N = 30 квантовых осцилляторов по энергетическим уровням в зависимости от температуры. Показаны только основной и пять первых возбужденных уровней энергии. При Т = 0 все осцилляторы находятся в основном состоянии. По мере роста температуры становятся доступными все более высокие энергии, и распределение осцилляторов по уровням становится все более равномерным

Для наглядности мы взяли систему из небольшого (N = 30 ) числа осцилляторов (строго говоря, статистические законы применимы к системам с гораздо большим числом частиц).

Возникает вопрос: каково среднее значение колебательного квантового числа n при некоторой температуре T ? Для ответа мы должны подсчитать сумму:

Чтобы сделать это, продифференцируем по q обе части равенства (3.67) для геометрической прогрессии:

откуда получаем

Используя (7) при

получаем из (6) выражение для искомого среднего

Теперь легко получить среднюю энергию осциллятора

где функция cth - гиперболический котангенс определена соотношением

На рис. 3.10 сплошной линией изображена средняя энергия квантового осциллятора, измеренная в единицах ħω ,

в зависимости от «безразмерной температуры»

Рис. 3.10. Средняя энергия квантового осциллятора в зависимости от температуры

Пунктирная линия

соответствует результату классической физики. Действительно, энергия

приходящаяся на одну степень свободы, является средним значением как кинетической, так и потенциальной энергий классического осциллятора, так что среднее значение полной энергии как раз равно

Видно, что квантовые поправки важны при низких температурах: при q < 0,3 средняя энергия осциллятора близка к энергии основного состояния ħω/2 . В таком случае говорят, что колебательные степени свободы «заморожены», то есть тепловой энергии недостаточно для возбуждения колебаний. Но уже при q = 2 обе энергии практически совпадают, то есть квантовые поправки малы. Значение q = 1 можно принять за условную границу между квантовой и классическими областями. Ее смысл прозрачен: при

тепловая энергия равна минимальной энергии возбуждения осциллятора, то есть разности между энергией

первого возбужденного состояния и энергией

основного состояния осциллятора.

Какие же температуры можно считать низкими для осциллятора, моделирующего реальную систему, например молекулу водорода Н 2 ? Характерные частоты молекулярных колебаний располагаются обычно в инфракрасной области и имеют порядок n = 10 14 Гц . Этому соответствуют энергия

и температура

Средняя энергия квантового ротатора. Таким образом, привычные для нас комнатные температуры оказываются достаточно низкими с точки зрения возбуждения колебаний молекул. Посмотрим, что происходит с молекулами при температурах Т < Т К0Л. Так как колебания отсутствуют, двухатомную молекулу можно представить в виде «гантели» - двух атомов, жестко соединенных между собой. Такая система называется ротатором и, как мы видели ранее, имеет пять степеней свободы - три поступательных (движение центра масс) и две вращательных. Энергия вращательного движения классического ротатора имеет вид (3.61). Учитывая связь

между угловой частотой вращения ω , моментом инерции I и моментом импульса L, записываем классическую энергию вращения молекулы как

В квантовой механике квадрат момента импульса квантуется,

Здесь J - ротационное квантовое число, поэтому квантуется и энергия вращательного движения молекулы

Используя это соотношение и распределение Максвелла - Больцмана, можно получить выражение для средней энергии квантового ротатора. Однако в этом случае формулы достаточно сложны, и мы ограничимся качественными результатами. При высоких температурах средняя энергия стремится к классическому значению k B Т, соответствующему двум степеням свободы (вращение вокруг двух ортогональных осей). При низких температурах ротатор будет находиться в основном состоянии, соответствующем значению J = 0 (отсутствие вращения). «Переход» между двумя этими предельными случаями осуществляется, очевидно, при такой температуре Т ВР когда тепловое движение способно возбудить вращательные степени свободы. Минимальная (отличная от нуля) энергия вращения равна

как это следует из формулы для Е ВР при J = 1 . Поэтому

Для момента инерции молекулы можно принять оценку

где m р = 1,67 ·10 –27 кг (масса протона), а а В = 5·10 –11 м - радиус Бора. Получаем тогда

Полученные оценки подтверждаются измерениями молярной теплоемкости при постоянном объеме с nV , которые мы уже обсуждали в предыдущей главе. При температурах ниже 100 К в тепловом движении участвуют только поступательные степени свободы молекулы. Средняя энергия молекулы равна 3kBТ/2, а энергия одного моля - 3N A k B T/2=3RT/2, откуда следует выражение для теплоемкости с nV = 3R/2. В диапазоне температур от 100 К до 200 К молярная теплоемкость увеличивается до значения с nV = 5R/2, что свидетельствует о «размораживании» двух дополнительных (вращательных) степеней свободы (то есть о добавлении k B T энергии на молекулу). В районе температур от 4 000 К до 5 000 К молярная теплоемкость снова увеличивается, на этот раз до значения с nV = 7R/2 . Это «разморозилась» колебательная степень свободы, что принесло дополнительную энергию k B T на молекулу.

Скорость химических реакций. У химиков есть эмпирическое правило, что при повышении температуры на 10 °С скорость реакции удваивается. Это - всего лишь грубое обобщение, из него есть множество исключений, но все же в целом оно более или менее верно. Объяснение можно и здесь дать на основе распределения Максвелла - Больцмана.

Для протекания многих химических реакций необходимо, чтобы энергия участвующих в них частиц превышала некое пороговое значение, которое мы обозначим Е 0 . Т 2 = 310 К это отношение равно Е 0 /k B Т 2 = 14,0 . Числа частиц, участвующих в реакции, определяются соотношениями

Действительно, повышение температуры всего на 10 градусов привело к увеличению на 60 % числа частиц, энергия которых превышает пороговое значение.