Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Восстановление спиртов. Химические свойства этиленгликоля, характеристика. Двухатомный спирт. Эфиры этиленгликоля

Имеют общую формулу C n H 2n (OH) 2 . Простейшим гликолем является этиленгликоль НО-СН 2 -СН 2 -ОН.

Номенклатура

Названия гликолей образованы от названий соответствующих углеводородов с суффиксами -диол или -гликоль:

H O - C H 2 - C H 2 - O H {\displaystyle {\mathsf {HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}} - 1,2-этандиол, этиленгликоль

H O - C H 2 - C H 2 - C H 2 - O H {\displaystyle {\mathsf {HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}} - 1,3-пропандиол, 1,3-пропиленгликоль

Физические и химические свойства

Низшие гликоли представляют собой бесцветные прозрачные жидкости со сладковатым вкусом. Безводные гликоли гигроскопичны. Из-за наличия двух полярных OH-групп в молекулах гликолей у них высокие вязкость, плотность, температуры плавления и кипения.

Низшие гликоли хорошо растворяются в воде и органических растворителях (спиртах, кетонах, кислотах и аминах). В то же время гликоли сами являются хорошими растворителями для многих веществ, за исключением ароматических и высших предельных углеводородов

Гликоли обладают всеми свойствами спиртов (образуют алкоголяты , простые и сложные эфиры), при этом гидроксильные группы реагируют независимо друг от друга, образовывая смесь продуктов.

С альдегидами и кетонами гликоли образуют 1,3-диоксоланы и 1,3-диоксаны.

Получение и применение

Гликоли синтезируют несколькими основными способами:

  • гидролиз соответствующих дихлоралканов
C l - C H 2 - C H 2 - C l → 200 o C 10 M P a N a 2 C O 3 H O - C H 2 - C H 2 - O H {\displaystyle {\mathsf {Cl{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}Cl{\xrightarrow[{200^{o}C\ 10MPa}]{Na_{2}CO_{3}}}HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}}
  • окисление алкенов перманганатом калия:
  • гидратация оксиранов (эпоксидов)

Гликоли служат в качестве растворителей и пластификаторов. Этиленгликоль и пропиленгликоль используются в качестве антифриза и гидравлических жидкостей. Благодаря высокой температуре кипения (например, 285°C у триэтиленгликоля), гликоли нашли применение в качестве тормозной жидкости . Гликоли применяются для получения различных эфиров, полиуретанов и др.

Определение и номенклатура двухатомных спиртов

Органические соединения, содержащие две гидроксильные группы ($-OH-$) называются двухатомными спиртами или диолами.

Общая формула двухатомных спиртов $CnH_{2n}(OH)_2$.

При обозначении двухатомных спиртов, согласно номенклатуре ИЮПАК, к окончанию -ол добавляют приставку ди-, то есть двухатомный спирт имеет окончание «диол». Цифры указывают, к каким углеродным атомам присоединены гидроксильные группы, например:

Рисунок 1.

1,2-пропандиол транс-1,2-циклогександиол 1-циклогексил-1,4-пентадиол

В систематической номенклатуре существует дифференциация между 1,2-, 1,3-, 1,4- и т.д. диолами.

Если соединение содержит гидроксильные группы у соседних (вициеальных) атомов углерода, то двухатомные спирты называют гликолями.

В названиях гликолей отображается способ их получения путем гидроксилирования алкенов, например:

Рисунок 2.

Существование стойких двухатомных спиртов возможно, начиная с этана, которому соответствует один диол - этиленгликоль. Для пропана возможно существование двух спиртов: 1,2- и 1,3- пропандиолов.

Из спиртов, соответствующих нормальному бутану, возможно существование следующих соединений:

  • обе гидроксогруппы находятся рядом - одна в группе $CH_3$, другая в группе $CH_2$;
  • оба гидроксила расположены в соседних $CH_2$ группах;
  • гидроксогруппы примыкают к несоседним атомам углерода, в группах $CH_3$ и $CH_2$;
  • оба гидроксила расположены в группах $CH_3$.

Изобутану соответствуют следующие диолы:

  • гидроксогруппы находятся рядом - в группах $CH_3$ и $CH$;
  • оба гидроксила расположены в группах $CH_3$:

Рисунок 3.

Двухатомные спирты можно классифицировать на основании того, какие спиртовые группы входят с состав их частицы:

  1. Двупервичные гликоли. Этиленгликоль содержит две первичные спиртовые группы.
  2. Двувторичные гликоли. Содержат две вторичные спиртовые группы.
  3. Двутретичные гликоли. Содержат три вторичные спиртовые группы.
  4. Смешанные гликоли: первично - вторичные, первично - третичные, вторично - третичные.

Например: изопентану соответствует вторично-третичный гликоль

Рисунок 4.

Гексану (тетраметил-этану) соответствует двутретичный гликоль:

Рисунок 5.

Если в двухатомном спирте оба гидроксила расположены у соседних атомов углерода, то это $\alpha$-гликоли. $\beta$-гликоли появляются, когда гидроксогруппы разъединены одним углеродным атомом. У диолов $\gamma$-ряда гидроксилы расположены через два углеродных атома. При большем отдалении друг от друга гидроксилов появляются диолы $\delta$- и $\varepsilon$-ряда.

Геминальные диолы

В свободном состоянии могут существовать только такие диолы, которые произошли из углеводородов в результате замены гидроксильными группами двух атомов водорода, находящихся при двух разных углеродных атомах. Когда гидроксогруппы замещают два атома водорода при одном и том же атоме углерода, возникают нестойкие соединения - геминальные диолы или гем-диолы.

Геминальные диолы - двухатомные спирты, содержащие обе гидроксильные группы у одного атома углерода. Это нестабильные соединения, легко разлагаются с отщеплением воды и образованием карбонильного соединения:

Рисунок 6.

Равновесие смещено в сторону образования кетона, поэтому геминальные диолы также называют гидратами альдегидов или кетонов.

Простейшим представителем геминальных диолов является метиленгликоль. Это соединение сравнительно устойчивое в водных растворах. Однако попытки его выделения приводят к появлению продукта дегидратации - формальдегиду:

$HO-CH_2-OH \leftrightarrow H_2C=O + H_2O$

Например: Не может существовать в свободном состоянии двухатомный спирт, соответствующий этану, если обе гидроксильные группы находятся при одном атоме углерода. Сразу выделяется вода и образуется уксусный альдегид:

Рисунок 7.

Два двухатомных спирта, отвечающих пропану, также не способны к самостоятельному существованию, так как будут выделять воду за счет гидроксилов, расположенных при одном углеродном атоме. При этом будут образовываться, в одном случае - пропионовый альдегид, в другом - ацетон:

Рисунок 8.

Незначительное количество гем-диолов могут существовать не в растворенном состоянии. Это соединения, которые содержат сильные электроноакцепторные заместители, например хлоральгидрат и гидрат гексафотрацетон

Рисунок 9.

Физические свойства гликолей

Для гликолей характерны следующие физические свойства:

  • низшие гликоли - бесцветные прозрачные жидкости, имеющие сладковатый вкус;
  • высокая температура кипения и плавления (tкип этиленгликоля 197$^\circ$С);
  • высокие плотность и вязкость;
  • хорошая растворимость в воде, этиловом спирте;
  • плохая растворимость в неполярных растворителях (например, в эфирах и углеводородах).

Общая закономерность: с увеличением молекулярной массы двухатомных спиртов растет температура кипения. При этом растворимость в воде уменьшается. Низшие спирты смешиваются с водой в любых соотношениях. У высших диолов растворимость в эфире больше, а в воде - меньше.

Для многих веществ двухатомные спирты выступают в роли хороших растворителей (исключение - ароматические и высшие предельные углеводороды).

Производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH .

Все спирты делятся на одноатомные и многоатомные

Одноатомные спирты

Одноатомные спирты - спирты, у которых имеется одна гидроксильная группа .
Бывают первичные, вторичные и третичные спирты:

У первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных - у второго, и т.д.

Свойства спиртов , которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному.

Сравнивая относительную молекулярную массу спиртов (Mr) c относительными атомными массами углеводородов, можно заметить, что спирты имеют более высокую температуру кипения. Это объясняется наличием водородной связи между атомом H в группе ОН одной молекулы и атомом O в группе -ОН другой молекулы.

При растворении спирта в воде образуются водородные связи между молекулами спирта и воды. Этим объясняется уменьшение объёма раствора (он всегда будет меньше, чем сумма объёмов воды и спирта по отдельности).

Наиболее ярким представителем химических соединений этого класса является этиловый спирт . Его химическая формула C 2 H 5 -OH. Концентрированный этиловый спирт (он же - винный спирт или этанол ) получают из разбавленных его растворов путём перегонки; действует опьяняюще, а в больших доза - это сильный яд, который разрушает живые ткани печени и клетки мозга.

Муравьиный спирт (метиловый)

При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата. Ещё один не менее известный представитель этого класса - метиловый спирт (его ещё называют - древесный или метанол ). В отличии от этанола метанол смертельно опасен даже в самых малых дозах! Сначала он вызывает слепоту, затем просто "убивает"!

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Двухатомными спиртами называются спирты ,содержащие две гидроксильные группы (группа ОН); спирты содержащие три гидроксильные группы - трёхатомные спирты . В их молекулах две или три гидроксильные группы никогда не оказываются присоединёнными к одному и тому же атому углерода.

Многоатомный спирт - глицерин

Двухатомные спирты ещё называют гликолями , так как они обладают сладким вкусом, - это характерно для всех многоатомных спиртов

Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты .

Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:

C 2 H 12 O 6 => C 2 H 5 -OH + CO 2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза , получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы . Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты

CH 2 =CH 2 + KOH => C 2 H 5 -OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Кстати, глицерин входит в состав многих косметических средств как консервант и как средство, предотвращающее замерзание и высыхание!

Свойства спиртов

1) Горение : Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:

C 2 H 5 -OH + 3O 2 -->2CO 2 + 3H 2 O

При их горении выделяется много теплоты, которую часто используют в лабораториях (лабораторные горелки). Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами

C 2 H 5 -OH + 2Na --> 2C 2 H 5 -ONa + H 2

При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами!

3) Реакция с галогеноводородом
C 2 H 5 -OH + HBr --> CH 3 -CH 2 -Br + H 2 O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H 2 SO 4)

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит . В процессе реакции образуется непредельный углеводород и вода.
Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Эта реакция является межмолекулярной реакцией дегидратации . Например, так:

В процессе реакции происходит образование простого эфира и воды.

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO 4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.

Что касается многоатомных спиртов , то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты , при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.

Взаимодействуют с азотной кислотой:

С точки зрения практического применения наибольший интерес представляет реакция с азотной кислотой. Образующийся нитроглицерин и динитроэтиленгликоль используют в качестве взрывчатых веществ, а тринитроглицерин - ещё и в медицине, как сосудорасширяющее средство.

Этиленгликоль

Этиленгликоль - типичный представитель многоатомных спиртов . Его химическая формула CH 2 OH - CH 2 OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.


Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы ). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Все мы видели глицерин . Он продаётся в аптеках в тёмных пузырьках и представляет собой вязкую бесцветную жидкость, сладковатую на вкус. - это трёхатомный спирт . Он очень хорошо растворим в воде, кипит при температуре 220 0 C.

Химические свойства глицерина во многом сходны со свойствами одноатомных спиртов, но глицерин может реагировать с гидроксидами металлов (например, гидроксидом меди Cu(OH) 2), при этом образуются глицераты металлов - химические соединения, подобные солям.

Реакция с гидроксидом меди - типовая для глицерина. В процессе химической реакции образуетс ярко-синий раствор глицерата меди

Эмульгаторы

Эмульгаторы - это высшие спирты , эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами , образуют стойкие эмульсии. Кстати, все косметические средства также являются эмульсиями! В качестве эмульгаторов часто используют вещества, представляющие собой искусственный воск (пентол, сорбитанолеат), а также триэтаноламин, лицетин.

Растворители

Растворители - это вещества, используемые в основном для приготовления лаков для волос и ногтей. Они представлены в небольшой номенклатуре, так как большинство таких веществ легко воспламенимо и вредно для организма человека. Наиболее распространённым представителем растворителей является ацетон , а также амилацетат, бутилацетат, изобутилат.

Есть также вещества, называемые разбавители . Они, в основном применяются вместе с растворителями для приготовления различных лаков .

Гликоли. Гидроксильные группы в гликолях содержатся у различных атомов углерода. Гликоли с двумя гидроксилами у одного углеродного атома нестойки. Они отщепляют воду с образованием альдегидов или кетонов.

Изомерия гликолей определяется взаимным расположением гидроксильных групп и изомерией углеродного скелета. В зависимости от взаимного расположения групп OH– различают α-, β-, γ-, δ-, … гликоли. В зависимости от характера углеродных атомов, несущих гидроксилы, гликоли могут быть первично-вторичными, первично-третичными, двупервичными, двувторичными и т.д.

Названия гликолей могут даваться двумя способами. По номенклатуре ИЮПАК к названию основной углеродной цепи добавляют суффикс –диол иуказывают номера углеродных атомов самой длинной углеродной цепи, несущих гидроксильные группы. Названия α- гликолей могут производиться от названия соответствующего этиленового углерода с добавлением слова гликоль . Классификация и названия гликолей даны ниже на примере бутандиолов:

Способы получения. В принципе, гликоли могут быть получены всеми обычными синтетическими методами получения спиртов.

Примером могут служить следующие реакции.

– Гидролиз дигалогенпроизводных насыщенных углеводо-родов и галогенгидринов:

– Гидратация α -окисей в кислой среде:

– Окисление олефинов перманганатом калия в разбавленном водном слабощелочном растворе (реакция Вагнера) или пероксидом водорода в присутствии катализаторов (CrO 3):

Физические свойства. Низшие гликоли хорошо растворимы в воде. Плотность их выше, чем у одноатомных спиртов. Соответственно выше и температуры кипения из-за значительной ассоциации молекул: например, этиленгликоль кипит при температуре 197,2 °C; пропиленгликоль – при температуре 189 °C и бутандиол-1,4 – при температуре 230 °C.

Химические свойства. Все сказанное ранее о свойствах соответствующих одноатомных спиртов приложимо и к гликолям. При этом следует помнить, что в реакцию может вступать как один гидроксил, так и сразу оба.– Окисление двупервичных гликолей дает альдегиды:

– При окислении α- гликолей йодной кислотой происходит разрыв связи между углеродными атомами, несущими гидроксилы, и образование соответствующих альдегидов или кетонов:

Метод имеет большое значение для установления строения α- гликолей.

–Результаты внутримолекулярного отщепления воды отгликолей в значительной мере зависят от типа гликоля .

Дегидратация α-гликолей протекает с образованием альдегидов или кетонов, γ-гликоли за счет атомов гидроксильных групп отщепляют воду с образованием гетероциклических соединений – тетрагидрофурана или его гомологов:

Первая реакция идёт через образование карбониевого иона с последующим перемещением атома водорода с его электронной парой:

При парофазной дегидратации над Al 2 O 3 α- двутретичных гликолей , называемых пинаконами, получаются диеновые углеводороды:

Межмолекулярная дегидратация приводит к образованию гидроксиэфиров или циклических простых эфиров:

Температура кипения диэтиленгликоля 245,5 °C. Его используют как растворитель для заполнения тормозных гидравлических систем, при отделке и крашении тканей.

Среди циклических простых эфиров наибольшее распространение как растворитель получил диоксан. Он получен впервые А.Е. Фаворским нагреванием этиленгликоля с серной кислотой:

Этиленгликоль – это вязкая бесцветная жидкость, сладковатая на вкус, t кип = 197,2 °C. В промышленных масштабах получается из этилена по трем схемам.

В смеси с водой этиленгликоль сильно понижает температуру её замерзания. Например, 60 %-ный водный раствор гликоля замерзает при температуре – 49 °C и с успехом применяется как антифриз . Большая гигроскопичность этиленгликоля используется для приготовления печатных красок. Большое количество этиленгликоля идёт на получение пленкообразующих материалов, лаков, красок, синтетических волокон (например, лавсана – полиэтилентерефталата), диоксана, диэтиленгликоля и других продуктов.

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты.Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:
C2H12O6 => C2H5-OH + CO2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза, получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы. Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты
CH2=CH2 + KOH => C2H5-OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Свойства спиртов

1) Горение: Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:
C2H5-OH + 3O2 -->2CO2 + 3H2O
При их горении выделяется много теплоты, которую часто используют в лабораториях Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами
C2H5-OH + 2Na --> 2C2H5-ONa + H2
При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь.

3) Реакция с галогеноводородом C2H5-OH + HBr --> CH3-CH2-Br + H2O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H2SO4)

Отщепление атома водорода от спирта может происходить в его же. Эта реакция является межмолекулярной реакцией дегидратации. Например, так:

В процессе реакции происходит образование простого эфира и воды.

5) реакция с карбоновыми кислотами:

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов. Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.
- a) для первичных спиртов

- б) для вторичных спиртов

- в) третичные спирты оксидом меди не окисляются!

Что касается многоатомных спиртов, то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты, при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.
Взаимодействуют с азотной кислотой:

Этиленгликоль - типичный представитель многоатомных спиртов. Его химическая формула CH2OH - CH2OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы). Раствор этиленгликоля замерзает при температуре -340C, что в холодное время года может заменить воду, например для охлаждения автомобилей.
При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп -ОН), соединенных с углеводородным радикалом.

Классификация спиртов

По числу гидроксильных групп (атомности) спир­ты делятся на:

Одноатомные , например:

Двухатомные (гликоли), например:

Трехатомные , например:

По характеру углеводородного радикала выде­ляют следующие спирты:

Предельные , содержащие в молекуле лишь пре­дельные углеводородные радикалы, например:

Непредельные , содержащие в молекуле крат­ные (двойные и тройные) связи между атомами углерода, например:

Ароматические , т. е. спирты, содержащие в мо­лекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества,содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений-фенолы.

Например:

Существуют и полиатомные (многоатомные спирты),содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит)

Номенклатура и изомерия спиртов

При образовании названий спиртов к названию углеводорода,соответствующего спирту,добавляют (родовой) суффикс-ол.

Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-,тетра- и т.д.-их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия- спирты изомерны простым эфирам:

Давайте дадим название спирту, формула которого указана ниже:

Порядок построения названия:

1. Углеродная цепь нумеруется с конца к которому ближе находится группа –ОН.
2. Основная цепь содержит 7 атомов С, значит соответствующий углеводород — гептан.
3. Число групп –ОН равно 2, префикс – «ди».
4. Гидроксильные группы находятся при 2 и 3 атомах углерода, n = 2 и 4.

Название спирта: гептандиол-2,4

Физические свойства спиртов

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы.Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения.Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов-метанол,имея относительную молекулярную массу 32, в обычных условиях-жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов,содержащих от 1 до 11 атомов углерода-жидкости.Высшие спирты(начиная с C 12 H 25 OH) при комнатной температуре-твердые вещества. Низшие спирты имеют алкогольный запах и жгучий вкус,они хорошо растворимы в воде.По мере увеличения углеродного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства спиртов

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные группы, поэтому химические свойства спиртов определяются взаимодействием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

  1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал,с одной стороны, и вещества,содержащего гидроксильную группу и не содержащего углеводородный радикал,-с другой. Такими веществами могут быть,например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами(замещаться на них)
  2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:
    Данная реакция обратима.
  3. Межмолекулярная дегидратация спиртов- отщепление молекулы воды от двух молекул спиртов при нагревании в присутствии водоотнимающих средств:
    В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140°С образуется диэтиловый (серный) эфир.
  4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров(реакция этерификации)

    Реакция этерификации катализируется сильными неорганическими кислотами. Например, при взаимодействии этилового спирта и уксусной кислоты образуется-этилацетат:

  5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры,чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше 140°С в присутствии концентрированной серной кислоты:
  6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:
    При окислении вторичных спиртов образуются кетоны:

    Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.
  7. Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные - в кетоны:

  8. Качествен­ная реакция на многоатомные спирты.
    Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимо­действии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

    Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

Получение спиртов:

Применение спиртов

Метанол (метиловый спирт СН 3 ОН) - бесцветная жидкость с характерным запахом и температурой кипения 64,7 °С. Горит чуть голубоватым пламенем. Историческое название метанола - древесный спирт объясняется одним из путей его получения способом перегонки твердых пород дерева (греч. methy - вино, опьянеть; hule - вещество, древесина).

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальдегид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт С 2 Н 5 ОН) - бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды. Для получения безводного этанола - «аб­солютного спирта» этот продукт обрабатывают ве­ществами, химически связывающими воду (оксид кальция, безводный сульфат меди (II) и др.).

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт - важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме - ацетальдегид - крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью - циррозу печени.

Этандиол-1,2 (этиленгликоль) - бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже О °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей - антифризов для двигателей внутреннего сгорания.

Пролактриол-1,2,3 (глицерин) - вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

К кондитерским изделиям глицерин добавляют для пре­дотвращения их кристаллиза­ции. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращаю­щий высыхание табачных листьев и их раскрошивание до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану. В последнем случае глицерин выполняет функции пластификато­ра, действуя наподобие смазки между полимерными молекулами и, таким образом, придавая пластмассам необходимую гибкость и эластичность.