Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Ультразвук. Применение и работа. Свойства и развитие. Особенности

Ультразвук

Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц . Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов XX века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в полицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это во-первых- сделать как можно больше отверстий в роторе, во-вторых- достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз , остеохондроз , артриты , бурситы , эпикондилиты, пяточная шпора , состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоты и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

, (3)

Для поперечных волн она определяется по формуле

Дисперсия звука - зависимость фазовой скорости монохроматической звуковых волн от их частоты . Дисперсия скорости звука может быть обусловлена как физическим свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны .

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны .

Волна Лэмба - упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

, (5)

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова - вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения , понимая под этим удельную мощность излучателя , т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Интенсивность звука измеряется в системе единиц СИ в Вт/м 2 . В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик - от пороговых значений ~ 10 -12 Вт/м 2 до сотен кВт/м 2 в фокусе ультразвуковых концентраторов.

Таблица 1 - Свойства некоторых распространенных материалов

Материал Плотность, кг/м 3 Скорость продольной волны, м/c Скорость поперечной волны, м/c , 10 3 кг/(м 2 *с)
Акрил 1180 2670 - 3,15
Воздух 0,1 330 - 0,00033
Алюминий 2700 6320 3130 17,064
Латунь 8100 4430 2120 35,883
Медь 8900 4700 2260 41,830
Стекло 3600 4260 2560 15,336
Никель 8800 5630 2960 49,544
Полиамид (нейлон) 1100 2620 1080 2,882
Сталь (низколегированный сплав) 7850 5940 3250 46,629
Титан 4540 6230 3180 26,284
Вольфрам 19100 5460 2620 104,286
Вода (293К) 1000 1480 - 1,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т.е. . Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r 2 , амплитуда волны убывает пропорционально , а для цилиндрической волны - пропорционально .

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле

, (6)

Коэффициент затухания от времени определяется

, (7)

Для измерения коэффициента также используют единицу дБ/м, в этом случае

, (8)

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике .

, (9)

  • где A 1 – амплитуда первого сигнала,
  • A 2 – амплитуда второго сигнала

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

Коэффициенты отражения и прохождения будут определяться следующим образом

, (12)

, (13)

  • где D – коэффициент прохождения звукового давления

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z 1 >Z 2 , то при отражении фаза волны изменяется на 180˚ .

Коэффициент пропускания энергии из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

, (14)

Интерференция и дифракция ультразвуковых волн

Интерференция звука - неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции - сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука - отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука - расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны , степень отклонений от геометрической картины зависит от значения волнового параметра

, (15)

  • где D - поперечник объекта (например, поперечник ультразвукового излучателя или препятствия),
  • r - расстояние точки наблюдения от этого объекта

Излучатели ультразвука

Излучатели ультразвука - устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию энергию какого-либо другого вида.

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи . В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях , магнитострикционных преобразователях , электродинамических излучателях , электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса : они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости .

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр , излучаемая мощность звука , направленность излучения . В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса , границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f 0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Чувствительность излучателя ультразвука - отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью , т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м 2 .

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия , представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля .

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

, (17)

Однако поскольку D обычно значительно больше , уравнение можно упростить и привести к виду

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. связано с получением информации посредством ультразвуковых волн, - с активным воздействием на вещество и - с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.

Волн начались более ста лет назад, только последние полвека они стали широко использоваться в различных областях человеческой деятельности. Это связано с активным развитием как квантового и нелинейного разделов акустики, так и квантовой электроники и физики твердого тела. Сегодня ультразвук - это не просто обозначение высокочастотной области акустических волн, а целое научное направление в современной физике и биологии, с которым связаны промышленные, информационные и измерительные технологии, а также диагностические, хирургические и лечебные методы современной медицины.

Что это?

Все звуковые волны можно подразделить на слышимые человеком — это частоты от 16 до 18 тыс. Гц, и те, которые находятся вне диапазона людского восприятия — инфра- и ультразвук. Под инфразвуком понимаются волны аналогичные звуковым, но с воспринимаемых человеческим ухом. Верхней границей инфразвуковой области считается 16 Гц, а нижней - 0,001 Гц.

Ультразвук - это тоже звуковые волны, но только их частота выше, чем может воспринять слуховой аппарат человека. Как правило, под ними понимают частоты от 20 до 106 кГц. Верхняя их граница зависит от среды, в которых эти волны распространяются. Так, в газовой среде предел составляет 106 кГц, а в твердых телах и жидкостях он достигает отметки в 1010 кГц. В шуме дождя, ветра или водопада, грозовых разрядах и в шуршании перекатываемой морской волной гальки есть ультразвуковые компоненты. Именно благодаря способности воспринимать и анализировать волны ультразвукового диапазона киты и дельфины, летучие мыши и ночные насекомые ориентируются в пространстве.

Немного истории

Первые исследования ультразвука (УЗ) были проведены еще в начале XIX века французским ученым Ф. Саваром (F. Savart), стремившимся выяснить верхний частотный предел слышимости человеческого слухового аппарата. В дальнейшем изучением ультразвуковых волн занимались такие известные ученые, как немец В. Вин, англичанин Ф. Гальтон, русский с группой учеников.

В 1916 году физик из Франции П. Ланжевен, в сотрудничестве с русским ученым-эмигрантом Константином Шиловским, смог использовать кварц для приема и излучения ультразвука для морских измерений и обнаружения подводных объектов, что позволило исследователям создать первый гидролокатор, состоявший из излучателя и приемника ультразвука.

В 1925 году американец В. Пирс создал прибор, называемый сегодня интерферометром Пирса, измеряющий с большой точностью скорости и поглощение ультразвука в жидких и газовых средах. В 1928 году советский ученый С. Соколов первым стал использовать ультразвуковые волны для обнаружения различных дефектов в твердых, в том числе и металлических, телах.

В послевоенные 50-60-е годы, на основе теоретических разработок коллектива советских ученых, возглавляемых Л. Д. Розенбергом, начинается широкое применение УЗ в различных промышленных и технологических областях. В это же время, благодаря работам английских и американских ученых, а также исследованиям советских исследователей, таких как Р. В. Хохлова, В. А. Красильникова и многих других, быстро развивается такая научная дисциплина, как нелинейная акустика.

Примерно тогда же предпринимаются первые попытки американцев использовать ультразвук в медицине.

Советский ученый Соколов еще в конце сороковых годов прошлого века разработал теоретическое описание прибора, предназначенного для визуализации непрозрачных объектов - «ультразвукового» микроскопа. Основываясь на этих работах, в середине 70-х годов специалисты из Стэндфордского университета создали прототип сканирующего акустического микроскопа.

Особенности

Имея общую природу, волны слышимого диапазона, равно как и ультразвуковые, подчиняются физическим законам. Но у ультразвука есть ряд особенностей, позволяющих широко его использовать в различных областях науки, медицины и техники:

1. Малая длина волны. Для наиболее низкого ультразвукового диапазона она не превышает нескольких сантиметров, обуславливая лучевой характер распространения сигнала. При этом волна фокусируется и распространяется линейными пучками.

2. Незначительный период колебаний, благодаря чему ультразвук можно излучать импульсно.

3. В различных средах ультразвуковые колебания с длиной волны, не превышающей 10 мм, обладают свойствами, аналогичными световым лучам, что позволяет фокусировать колебания, формировать направленное излучение, то есть не только посылать в нужном направлении энергию, но и сосредотачивать ее в необходимом объеме.

4. При малой амплитуде существует возможность получения высоких значений энергии колебаний, что позволяет создавать высокоэнергетические ультразвуковые поля и пучки без использования крупногабаритной аппаратуры.

5. Под воздействием ультразвука на среду возникает множество специфических физических, биологических, химических и медицинских эффектов, таких как:

  • диспергирование;
  • кавитация;
  • дегазация;
  • локальный нагрев;
  • дезинфекция и мн. др.

Виды

Все ультразвуковые частоты подразделяются на три вида:

  • УНЧ - низкие, с диапазоном от 20 до 100 кГц;
  • УСЧ - среднечастотные - от 0,1 до 10 МГц;
  • УЗВЧ - высокочастотные - от 10 до 1000 МГц.

Сегодня практическое использование ультразвука - это прежде всего применение волн малой интенсивности для измерений, контроля и исследований внутренней структуры различных материалов и изделий. Высокочастотные используются для активного воздействия на различные вещества, что позволяет изменять их свойства и структуру. Диагностика и лечение ультразвуком многих заболеваний (при помощи различных частот) является отдельным и активно развивающимся направлением современной медицины.

Где применяется?

В последние десятилетия ультразвуком интересуются не только научные теоретики, но и практики, все более активно внедряющие его в различные виды человеческой деятельности. Сегодня ультразвуковые установки используются для:

Получение информации о веществах и материалах

Мероприятия

Частота в кГц

Исследование состава и свойств веществ

твердые тела

жидкости

Контроль размеров и уровней

Гидролокация

Дефектоскопия

Медицинская диагностика

Воздействия

на вещества

Пайка и металлизация

Пластическое деформирование

Механическая обработка

Эмульгирование

Кристаллизация

Распыление

Коагуляция аэрозолей

Диспергирование

Химические процессы

Воздействие на горение

Хирургия

Обработка и управление сигналами

Акустоэлектронные преобразователи

Линии задержки

Акустооптические устройства

В современном мире ультразвук — это важный технологический инструмент в таких промышленных отраслях, как:

  • металлургическая;
  • химическая;
  • сельскохозяйственная;
  • текстильная;
  • пищевая;
  • фармакологическая;
  • машино- и приборостроительная;
  • нефтехимическая, перерабатывающая и другие.

Кроме этого, все более широко используется ультразвук в медицине. Вот об этом мы и поговорим в следующем разделе.

Использование в медицине

В современной практической медицине существует три основных направления использования ультразвука различных частот:

1. Диагностическое.

2. Терапевтическое.

3. Хирургическое.

Рассмотрим более подробно каждое из этих трех направлений.

Диагностика

Одним из наиболее современных и информативных методов медицинской диагностики является ультразвуковой. Его несомненные достоинства - это: минимальное воздействие на человеческие ткани и высокая информативность.

Как уже говорилось, ультразвук — это звуковые волны, распространяющиеся в однородной среде прямолинейно и с постоянной скоростью. Если на их пути находятся области с различными акустическими плотностями, то часть колебаний отражается, а другая часть преломляется, продолжая при этом свое Таким образом, чем больше разница в плотности пограничных сред, тем больше ультразвуковых колебаний отражается. Современные методы ультразвукового исследования можно подразделить на локационные и просвечивающие.

Ультразвуковая локация

В процессе такого исследования регистрируются отраженные от границ сред с различными акустическими плотностями импульсы. При помощи перемещаемого датчика можно установить размер, расположение и форму исследуемого объекта.

Просвечивание

Этот метод основан на том, что различные ткани человеческого организма по-разному поглощают ультразвук. Во время исследования какого-либо внутреннего органа в него направляют волну с определенной интенсивностью, после чего специальным датчиком регистрируют прошедший сигнал с обратной стороны. Картина сканируемого объекта воспроизводится на основе изменения интенсивности сигнала на «входе» и «выходе». Полученная информация обрабатывается и преобразуется компьютером в виде эхограммы (кривой) или сонограммы - двухмерного изображения.

Допплер-метод

Это наиболее активно развивающийся метод диагностики, в котором используются как импульсный, так и непрерывный ультразвук. Допплерография широко применяется в акушерстве, кардиологии и онкологии, так как позволяет отслеживать даже самые незначительные изменения в капиллярах и небольших кровеносных сосудах.

Области применения диагностики

Сегодня ультразвуковые методы визуализации и измерений наиболее широко применяются в таких областях медицины, как:

  • акушерство;
  • офтальмология;
  • кардиология;
  • неврология новорожденных и младенцев;
  • исследование внутренних органов:

Ультразвук почек;

Желчного пузыря и протоков;

Женской репродуктивной системы;

  • диагностика наружных и приповерхностных органов (щитовидной и молочных желез).

Использование в терапии

Основное лечебное воздействие ультразвука обусловлено его способностью проникать в человеческие ткани, разогревать и прогревать их, осуществлять микромассаж отдельных участков. УЗ может быть использован как для непосредственного, так и для косвенного воздействия на очаг боли. Кроме того, при определенных условиях эти волны оказывают бактерицидное, противовоспалительное, обезболивающее и спазмолитическое действие. Используемый в терапевтических целях ультразвук условно подразделяют на колебания высокой и низкой интенсивности.

Именно волны низкой интенсивности наиболее широко применяется для стимуляции физиологических реакций или незначительного, не повреждающего нагрева. Лечение ультразвуком дало положительные результаты при таких заболеваниях, как:

  • артрозы;
  • артриты;
  • миалгии;
  • спондилиты;
  • невралгии;
  • варикозные и трофические язвы;
  • болезнь Бехтерева;
  • облитерирующие эндартерииты.

Проводятся исследования, во время которых используется ультразвук для лечения болезни Меньера, язв двенадцатиперстной кишки и желудка, бронхиальной астмы, отосклероза.

Ультразвуковая хирургия

Современная хирургия, использующая ультразвуковые волны, подразделяется на два направления:

Избирательно разрушающая участки ткани особыми управляемыми ультразвуковыми волнами высокой интенсивности с частотами от 10 6 до 10 7 Гц;

Использующая хирургический инструмент с наложением ультразвуковых колебаний от 20 до 75 кГц.

Примером избирательной УЗ-хирургии может послужить дробление камней ультразвуком в почках. В процессе такой неинвазивной операции ультразвуковая волна воздействует на камень через кожу, то есть снаружи человеческого тела.

К сожалению, подобный хирургический метод имеет ряд ограничений. Нельзя использовать дробление ультразвуком в следующих случаях:

Беременным женщинам на любом сроке;

Если диаметр камней более двух сантиметров;

При любых инфекционных заболеваниях;

При наличии болезней, нарушающих нормальную свертываемость крови;

В случае тяжелых поражений костной ткани.

Несмотря на то что удаление ультразвуком почечных камней проводится без операционных разрезов, оно довольно болезненное и выполняется под общей или местной анестезией.

Хирургические ультразвуковые инструменты используются не только для менее болезненного рассечения костных и мягких тканей, но и для уменьшения кровопотерь.

Обратим свой взор в сторону стоматологии. Ультразвук камни зубные удаляет менее болезненно, да и все остальные манипуляции врача переносятся гораздо легче. Кроме того, в травматологической и ортопедической практике ультразвук используется для восстановления целостности сломанных костей. Во время таких операций пространство между костными отломками заполняют специальным составом, состоящим из костной стружки и особой жидкой пластмассы, а затем воздействуют ультразвуком, благодаря чему все компоненты крепко соединяются. Те, кто перенес хирургические вмешательства, в ходе которых использовался ультразвук, отзывы оставляют разные - как положительные, так и отрицательные. Однако следует отметить, что довольных пациентов все же больше!

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком. Ультразвук сильно поглощается газами и во много раз слабее - твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны. Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение. Все это позволяет широко использовать ультразвук в технике.

Описанные свойства ультразвука используются в эхолоте - приборе для определения глубины моря (рис. 25.11). Корабль снабжают источником и приемником ультразвука определенной частоты. Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде , с помощью формулы (25.3) определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на пути корабля в горизонтальном направлении. При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например, летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины.

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость . Это используют для ускорения самых различных технологических процессов (например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий - взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волнами или инфразвуком. Они также не вызывают звуковых ощущений, Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении. Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.

В последнее время широкое распространение в разных областях науки, техники и медицины получило использование ультразвука.

Что же это такое? Где применяются ультразвуковые колебания? Какую пользу они способны принести человеку?

Ультразвуком называют волнообразные колебательные движения с частотой более 15-20 килогерц, возникающие под воздействием окружающей среды и неслышимые для человеческого уха. Ультразвуковые волны легко фокусируются, что увеличивает интенсивность колебаний.

Источники ультразвука

В природе ультразвук сопровождает различные естественные шумы: дождь, грозу, ветер, водопад, морской прибой. Его способны издавать некоторые животные (дельфины, летучие мыши), что помогает им обнаруживать препятствия и ориентироваться в пространстве.

Все существующие искусственные источники ультразвука подразделяют на 2 группы:

  • генераторы - колебания возникают в результате преодоления препятствий в виде газа или жидкостной струи.
  • электроакустические преобразователи- трансформируют электрическое напряжение в механические колебания, что приводит к излучению акустических волн в окружающую среду.

Приемники ультразвука

Низкие и средние частоты ультразвуковых колебаний в основном воспринимаются электроакустическими преобразователями пьезоэлектрического типа. В зависимости от условий использования различают резонансные и широкополосные устройства.

Чтобы получить характеристики звукового поля, которые усреднены по времени, применяют термические приемники, представленные термопарами или термисторами, которые покрывают веществом, обладающим звукопоглощающими свойствами.

Оптические методы, в число которых входит дифракция света, способны оценить интенсивность ультразвука и звуковое давление.

Где применяются ультразвуковые волны?

Ультразвуковые волны нашли применение в разнообразных областях.

Условно сферы использования ультразвука можно разделить на 3 группы:

  • получение информации;
  • активное воздействие;
  • обработка и передача сигналов.

В каждом случае используется определенный диапазон частот.

Очистка ультразвуком

Ультразвуковое воздействие обеспечивает качественную очистку деталей. При простом полоскании деталей на них остается до 80% грязи, при вибрационной чистке - близко 55%, при ручной - около 20%, а при ультразвуковой - менее 0,5%.

Детали, обладающие сложной формой, можно избавить от загрязнений только при помощи ультразвука.

Используются ультразвуковые волны и при очистке воздуха и газов. Ультразвуковой излучатель, помещенный в пылеосадочную камеру, увеличивает результативность ее действия в сотни раз.

Механическая обработка хрупких и сверхтвердых материалов

Благодаря ультразвуку стала возможной сверхточная обработка материалов. С его помощью делают вырезы различной формы, матрицы, шлифуют, гравируют и даже сверлят алмазы.

Применение ультразвука в радиоэлектронике

В радиоэлектронике нередко возникает необходимость задержать электрический сигнал по отношению к какому-то другому сигналу. Для этого стали пользоваться ультразвуковыми линиями задержки, действие которых основано на преобразовании электрических импульсов в ультразвуковые волны. Также они способны преобразовывать механические колебания в электрические. В соответствии с этим линии задержки могут быть магнитострикционными и пьезоэлектрическими.

Использование ультразвука в медицине

Применение ультразвуковых колебаний в медицинской практике основано на возникающих в биологических тканях эффектах во время прохождения сквозь них ультразвука. Колебательные движения оказывают на ткани массажирующее действие, а при поглощении ультразвука они локально нагреваются. В то же время в организме наблюдаются различные физико-химические процессы, не вызывающие необратимых изменений. В результате ускоряются обменные процессы, что благоприятно сказывается на функционировании всего организма.

Применение ультразвука в хирургии

Интенсивное действие ультразвука вызывает сильное нагревание и кавитацию, что нашло применение в хирургии. Использование фокусного ультразвука при проведении операций дает возможность осуществлять локальное разрушающее действие в глубинных участках организма, в том числе в области головного мозга, не нанося вреда близлежащим тканям.

Хирурги в своей работе используют инструменты с рабочим концом в виде иглы, скальпеля или пилы. При этом хирургу не требуется прикладывать усилий, что уменьшает травматичность процедуры. В то же время ультразвук оказывает анальгезирующее и кровоостанавливающее действие.

Воздействие ультразвуком назначается при обнаружении в организме злокачественного новообразования, что способствует его разрушению.

Ультразвуковые волны обладает и антибактериальным действием. Поэтому они применяются для стерилизации инструментов и лекарственных средств.

Исследование внутренних органов

С помощью ультразвука осуществляют диагностическое обследование органов, расположенных в брюшной полости. Для этого применяют специальный аппарат.

Во время ультразвукового исследования удается обнаружить различные патологии и аномальные структуры, отличить доброкачественное новообразование от злокачественного, обнаружить инфекцию.

Ультразвуковые колебания используют при диагностике печени. Они позволяют определить болезни желчных потоков, исследовать желчный пузырь на присутствие в нем камней и патологических изменений, выявить цирроз и доброкачественные болезни печени.

Широкое применение нашло ультразвуковое исследование в области гинекологии, особенно при диагностике матки и яичников. Оно помогает обнаружить гинекологические заболевания и дифференцировать злокачественные и доброкачественные опухоли.

Используются ультразвуковые волны и при исследовании других внутренних органов.

Применение ультразвука в стоматологии

В стоматологии с помощью ультразвука удаляют зубной налет и камень. Благодаря ему наслоения снимаются быстро и безболезненно, без травмирования слизистой оболочки. В то же время происходит обеззараживание ротовой полости.