Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Основные свойства магнитного поля. §16. Магнитное поле и его характеристики и свойства

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий . Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция , магнитный поток и магнитная проницаемость . Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ .

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B . Единица измерения магнитной индукции – Тесла (Тл ).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца .

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб) .

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии .

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо ) не объясняет того, как поле сохраняется устойчивым.

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! и другие типы работ вы можете заказать по ссылке.

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Введение

Что такое магнитное поле? Все о нем слышали, все видели, как намагниченная стрелка компаса всегда одним и тем же концом поворачивается в сторону северного магнитного полюса, а другим своим концом - всегда в сторону южного магнитного полюса. Человека от самого умного животного отличает то, что он любопытен, и хочет знать - а почему это так происходит, как это устроено, что так происходит. Именно для объяснения происходящего вокруг него древний человек придумал богов. Духи, боги в сознании людей были факторами, которыми обяснялось все, что человек видел, слышал, от чего зависела удача на охоте и на войне, кто передвигал Солнце по небу, кто устраивал грозу, проливал дождь и сыпал снег, в общем, все сущее, все происходящее. Представьте себе, к дедушке подходит маленький внук, показывает на молнию и спрашивает: что это такое, почему огонь из тучи летит в землю, и кто так громко стучит там в облаках? Если дед отвечал: не знаю, то внук смотрел на него с сожалением и начинал меньше уважать. Но когда дед говорил, что это бог Ярило ездит на колеснице по облакам и огненные стрелы в нехороших людей пускает, внук слушал и еще больше уважал своего деда. Он начинал меньше бояться грома и молнии, так как знал, что он же хороший, поэтому Ярило в него стрелять не станет.

В раннем детстве, когда я начинал шалить, бабушка Анна говорила: "Шурка, смотри, не шали, а то боженька камешком стукнет". И при этом показывала на икону в красном углу на полке-божнице. Я на некоторое время притихал, с опаской посматривал на сурового мужика, нарисованного на доске, но как-то раз усомнился в его способности кидаться камнями. Поставил на лавку табуретку, влез на нее и заглянул на полку за икону. Никаких камушков я там не увидел, и когда бабка стала в очередной раз стращать меня, рассмеялся и заявил: "Никаких камней у него нет, и вообще он нарисованный и кидаться не может. И нечего пугать меня боженькой, я уже не маленький". Вот так же и наш далекий предок когда-то засомневался, что это Ярило по небу катается и стрелы пускает. Вот тогда-то и зародилось рациональное знание, когда люди засомневались во всемогуществе богов. Но чем же они их заменили? А заменили они богов законами природы, и крепко стали верить этим законам. Но там, где законами природы человек объяснить происходящее не может, он оставил место для богов. Именно поэтому религия и наука сосуществуют в обществе до сих пор.

Помню, как старшие приятели показали нам, малышам, фокус. По столу сам по себе двигался положенный на стол железный гвоздь, а парень-фокусник под столом передвигал свою руку. Гвоздь следовал за рукой. Мы удивленно таращили на это глаза и не понимали, почему гвоздь движется. Когда я рассказал матери об этом фокусе, то она разъяснила, что в руке у парня был магнит, который притягивает к себе железо, что парень под столом двигал не просто рукой, а в руке у него был магнит. На тот момент это объяснение удовлетворило мое любопытство, но чуть позже я уже хотел понять, а почему магнит на расстоянии - через доску стола, через слой воздуха - притягивает к себе железо. На этот вопрос ни мама, ни отец мне ответить не смогли. Пришлось ждать до школы. Там на уроке физики учитель объяснил, что магнит действует на железо через магнитное поле, которое создает вокруг себя, что у магнита есть два полюса - северный и южный, что из северного выходят какие-то невидимые магнитные силовые линии, которые дугой изгибаются и входят в южный полюс.

Тогда я впервые задумался: значит, в мире, кроме видимого, слышимого и осязаемого, есть кое-что невидимое и неосязаемое. Тогда я подумал: а что, если бог невидим и неосязаем - как это магнитное поле. Его вроде бы и нет нигде, а он все же существует. А на иконах в виде мужика его так, по глупости, изображают. Не знал я тогда, что до этого еще раньше меня додумался и философ Спиноза, который стал рассматривать Природу и Бога как единое и неразделимое, видимое и невидимое. Природа и есть Бог!

Помню, я пытался представить это магнитное поле, состоящее из силовых линий, и ничего не понимал. Я этих линий не видел и не слышал. Они ничем не пахли, и поверить в то, что вокруг нас может быть что-то, что мы никак не ощущаем, мне тогда было не очень понятно. Железные гвозди и опилки чувствовали магнитное поле и ориентировались и двигались в нем, а я со своими тонкими органами чувств ничего не чувствовал. Эта ущербность меня откровенно угнетала. Но не одного меня. А. Эйнштейн писал о сильном удивлении от увиденных свойств магнита, который ему в детстве подарил на день рождения отец, от того, что он не мог понять, как и почему эти притягательные свойства магнита происходят.

Когда учительница обществоведения уже в 10-м классе познакомила нас с определением материи, данным В.И. Лениным: "материя это то, что существует вокруг нас и дано нам в ощущениях", я возмущенно ее спросил: "а вот магнитное поле мы не ощущаем, а оно существует, оно что - разве не материя?". Да, одних органов чувств недостаточно, чтобы воспринимать все формы материи, требуется еще разум, с помощью которого если мы что-то и не чувствуем - не ощущаем, то понимаем, что оно есть. Поняв это, я решил изучать науки и развивать свой ум, надеясь, что это позволит мне многое понять. Но по мере того как я расширял пространство понятного мне, непонятное не исчезало, а только отодвигалось, и линия горизонта непонятного становилась все длиннее, так как круг познанного увеличивался и длина его окружности, отделяющая понятое моим разумом от непознанного и непонятного, тоже увеличивалась. В этом и состоит главный парадокс познания: чем больше мы узнаем и понимаем, тем больше мы еще не знаем. Об этом ученом незнании писал еще Николай Кузанский, которого почему-то считают философом схоластиком, хотя открытая им истина скорее говорит все же о том, что он был диалектиком.

Первые упоминания о породах, способных притягивать железо, относятся к античным временам. С магнитом связана старинная легенда о пастухе Магнусе, который однажды обнаружил, что его железный посох и сандалии, подбитые железными гвоздями, притягиваются к неведомому камню. С тех пор данный камень стали именовать «камнем Магнуса», или магнитом.

Происхождение и сущность магнитного поля Земли, как и магнитных полей вообще, и по сей день остается загадкой. Существует много гипотез - вариантов объяснения этого феномена, но истина по-прежнему "где-то там". Вот так определяют магнитное поле ученые физики: "Магнитное поле - это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения". И далее: "Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени). Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля". Я бы не сказал, что с логической точки зрения это блестящее определение. Сказать, что магнитное поле - это силовое поле, значит не сказать ничего, это - тавталогия. Ведь гравитационное поле - тоже силовое поле, и поле ядерных сил - силовое! Указание на воздействие магнитного поля на движущиеся электрические заряды кое о чем говорит, это описание одного из свойств магнитного поля. Но непонятно, действует ли магнитное поле непосредственно на частицы, имеющие электрические заряды, или оно действует на магнитные поля, образуемые этими частицами, а те (трансформированные поля частиц) уже в свою очередь действуют на частицы - передают им полученный импульс.

Впервые магнитные явления начал изучать английский врач и физик Уильям Гильберт, написавший работу «О магните, магнитных телах и о большом магните - Земле». Тогда считали, что электричество и магнетизм не имеют ничего общего. Но в начале XIX в. датский ученый Г.Х. Эрстед в 1820 г. экспериментальным путем доказал, что магнетизм является одной из скрытых форм электричества, и подтвердил это на опыте. Этот опыт повлек за собой лавину новых открытий, имевших огромное значение. Вокруг проводников с электрическим током возникает поле, которое было названо магнитным . Пучок движущихся электронов оказывает действие на магнитную стрелку, аналогичное проводнику с током (опыт Иоффе). Конвекционные токи электрически заряженных частиц по своему действию на магнитную стрелку подобны токам проводимости (опыт Эйхенвальда).

Магнитное поле создается только движущимися электрическими зарядами или движущимися электрически заряженными телами, а также постоянными магнитами. Этим магнитное поле отличается от электрического поля, которое создают как движущиеся, так и неподвижные электрические заряды.

Линии вектора магнитной индукции (В) всегда замкнуты и охватывают проводник с током, а линии напряженности электрического поля начинаются на положительных и кончаются на отрицательных зарядах, они разомкнуты. Линии магнитной индукции постоянного магнита выходят из одного полюса, называемого северным (N) и входят в другой - южный (S). Вначале кажется, что здесь наблюдается полная аналогия с линиями напряженности электрического поля (Е). Полюса магнитов играют роль магнитных зарядов. Однако если разрезать магнит, картина сохраняется, получаются более мелкие магниты - но каждый со своими северным и южным полюсами. Магнитные полюса разделить так, что северный полюс будет у одного куска, а южный у другого, невозможно, потому что свободных (дискретных) магнитных зарядов, в отличие от дискретных электрических зарядов, в природе не существует.

Магнитные поля, существующие в природе, разнообразны по масштабам и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается на расстоянии 70-80 тысяч километров в направлении к Солнцу и на многие миллионы километров в обратном направлении. Происхождение магнитного поля Земли связывают с движениями жидкого вещества, проводящего электрически заряженные частицы в земном ядре. Мощными магнитными полями обладают Юпитер и Сатурн. Магнитное поле Солнца играет важнейшую роль во всех происходящих на Солнце процессах - вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей. Магнитное поле широко применяется в различных отраслях промышленности: при погрузке железного лома, при очистке муки на хлебозаводах от металлических примесей, а также в медицине для лечения больных.

Что такое магнитное поле

Основной силовой характеристикой магнитного поля является вектор магнитной индукции . Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина). Вообще-то вектор - это величина, имеющая направление в пространстве, следовательно, можно говорить и о направлении магнитной индукции и о ее величине. Но сказать, что магнитное поле - это только направление магнитной индукции, значит, не очень-то и много разъяснить. Есть еще одна характеристика магнитного поля - векторный потенциал. В качестве основной характеристики магнитного поля в вакууме выбирают не вектор магнитной индукции, а вектор напряжённости магнитного поля . В вакууме эти два вектора совпадают, а в веществе нет, но с систематической точки зрения следует считать основной характеристикой магнитного поля именно векторный потенциал .

Магнитное поле можно назвать особым видом материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей. Магнитное и электрическое поля вместе образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны. С точки зрения квантовой теории поля, магнитное взаимодействие - как частный случай электромагнитного взаимодействия - переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) виртуальным. Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

По-моему, эти определения весьма туманны. Понятно, что магнитное поле - не пустота, а особый вид материи - часть реального мира. Понятно, что магнитное поле неразрывно связано с движением электрических зарядов - электрическим током. А вот как магнитное поле с электрическим полем образуют единое электромагнитное поле, непонятно. Скорее всего, существует некое единое поле, которое в зависимости от обстоятельств проявляет себя то как магнитное поле, то как электрическое. Прямо как гермафродит какой-то, который в определенных обстоятельствах может быть мальчиком, а в других обстоятельствах - девочкой.

Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца. Эта сила всегда направлена перпендикулярно к вектору скорости движения частицы - v и векторному потенциалу магнитного поля - B . Эта сила пропорциональна заряду частицы q , ее скорости v , перпендикулярна направлению вектора магнитного поля B и пропорциональна величине индукции магнитного поля B . Поясню тем, кто совсем позабыл школьную физику: сила - это причина, вызывающая ускорение движения тел. Здесь сила действует не на массу частицы, а на ее заряд. Этим сила Лоренца отличается от силы гравитации, которая действует на массу частиц (тел), поскольку масса тела - это его гравитационный заряд.

Магнитное поле действует и на проводник с током. Сила, действующая на проводник с током, называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника электрические заряды. Это и есть сила тока, измеряемая в амперах.

При взаимодействии двух магнитов их одинаковые полюсы отталкиваются, а противоположные притягиваются. Однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления. Непонятно, почему в рамках такой модели диполи никогда не могут быть разделены. Эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом одного знака. Всякое намагниченное тело имеет два полюса - северный и южный. На магнитный диполь, помещённый в неоднородное магнитное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен (совпадал по направлению) с магнитным полем, в которое этот магнитный диполь поместили.

В 1831 г. Майкл Фарадей обнаружил, что в замкнутом проводнике, если его поместить в изменяющемся магнитном поле, возникает электрический ток. Это явление получило название электромагнитная индукция.

М. Фарадей обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока, проходящего через часть электрического контура, находящуюся в это магнитное поле. Величина (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение части контура в магнитном поле. Электрический ток, вызванный ЭДС, называется индукционным током. Это открытие позволило создать генераторы электрического тока и создать, по-сути, нашу электрическую цивилизацию . Кто бы мог подумать в 30-е годы XIX в., что открытие М. Фарадея было эпохальным цивилизационным открытием, определившим будущее человечества?

В свою очередь, магнитное поле может создаваться и изменяться (ослабляться или усиливаться) переменным электрическим полем, создаваемым электрическими токами в виде потоков заряженных частиц. Микроскопическая структура вещества, помещенного в переменное магнитное поле, влияет на силу возникающего в нем тока. Одни структуры ослабляют возникающий электрический ток, а другие усиливают его в разной степени. Одно из первых исследований магнитных свойств вещества ваыполнил Пьер Кюри. В связи с этим вещества в отношении их магнитных свойств делятся на две основные группы:

1. Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов частиц вещества.

2. Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов частиц вещества - атомов или ионов: магнитные моменты частиц вещества направлены противоположно и равны по силе.

Различают также вещества диамагнетики и вещества парамагнетики.

Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

Типы упорядочения магнитных моментов атомов в парамагнитных (а), ферромагнитных (б) и антиферромагнитных (в) веществах. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

К перечисленным выше группам веществ в основном относятся обычные твердые, жидкие и газообразные вещества. От них существенно отличаются своим взаимодействием с магнитным полем сверхпроводники и плазмы.

Магнитное поле ферромагнетиков (пример - железа) заметно на значительных расстояниях.

Магнитные свойства парамагнетиков аналогичны свойствам ферромагнетиков, но выражены гораздо слабее - на меньшем расстоянии.

Диамагнетики не притягиваются, а отталкиваются магнитом, сила, действующая на диамагнетики, направлена противоположно той, что действует на ферромагнетики и парамагнетики.

Согласно правилу Ленца, магнитное поле индуцируемого в магнитном поле электрического тока направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего этот ток. Хочу заметить, что взаимодействие переменного магнитного поля и индуцируемого им электрического тока и электрического поля соответствует принципу Ле-Шателье. Это не что иное, как автоторможение процесса, присущее всем процессам, происходящим в реальном мире.

Согласно принципу Ле-Шателье, всякий процесс, происходящий в мире, порождает процесс, имеющий противоположное направление и тормозящий процесс, его вызывающий. По-моему, это один из главных законов мироздания, которому почему-то не уделяют должного внимание ни физики, ни философы.

Все вещества в большей или меньшей степени обладают магнитными свойствами. Если два проводника с электрическими токами поместить в какую либо среду, то сила магнитного взаимодействия между токами изменяется. Индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме. Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью. Максимальной магнитной проницаемостью обладает вакуум.

Магнитные свойства веществ определяются магнитными свойствами атомов - электронов, протонов и нейтронов, входящих в состав атомов. Магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства вещества в основном определяются электронами, входящими в состав его атомов.

Одним из важнейших свойств электрона является наличие у него не только электрического, но и магнитного поля. Собственное магнитное поле электрона, возникающее якобы при вращении его вокруг своей оси, называют спиновым полем (spin - вращение). Но электрон создает магнитное поле также и за счет своего движения вокруг ядра атома, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.

Поведение парамагнетика (1) и диамагнетика (2) в неоднородном магнитном поле. Рисунок с сайта:http://physics.ru/courses/op25part2/content/chapter1/section/ paragraph19/theory.html

Вещества крайне разнообразны по своим магнитным свойствам. Например, платина, воздух, алюминий, хлористое железо - парамагнетики, а медь, висмут, вода - диамагнетики. Образцы из парамагнетика и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному - парамагнетики втягиваются в область сильного поля, а диамагнетики, наоборот, выталкиваются из него.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие - микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по направлению индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания.

Диамагнитными свойствами обладают атомы любых веществ, но во многих случаях их диамагнетизм маскируется сильным парамагнитным эффектом. Явление диамагнетизма было открыто М. Фарадеем в 1845 г.

Ферромагнетики могут сильно намагничиваться в магнитном поле, их магнитная проницаемость очень велика. К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Ферромагнетиками могут быть различные сплавы этих элементов, например, керамические ферромагнитные материалы - ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770°C, у кобальта 1130°C, у никеля 360°C.

Ферромагнитные материалы бывают магнито-мягкие и магнито-жесткие. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие материалы используются в основном для изготовления постоянных магнитов.

Характерной особенностью процесса намагничивания ферромагнетиков является гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса.

Зависимость магнитной проницаемости ферромагнетика от индукции внешнего магнитного поля. Намагничивается ферромагнетик вначале быстро, но достигнув максимума, намагничивается все медленнее. Рисунок с сайта:http://physics.ru/courses/op25part2/content/chapter1/section/ paragraph19/theory.html

Типичная петля гистерезися для магнитно-твердого ферромагнитного материала. В точке 2 достигается магнитное насыщение. Отрезок 1-3 определяет остаточную магнитную индукцию, а отрезок 1-4 - коэрцитивную силу, характеризующую способность образца противостоять размагничиванию. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

Природа ферромагнетизма может быть понята на основе квантовых представлений. Ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области. Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.

Иллюстрация процесса намагничивания ферромагнитного образца:

а - вещество в отсутствие внешнего магнитного поля: его отдельные атомы, являющиеся маленькими магнитами, расположены хаотически; б - намагниченное вещество: под действием внешнего поля атомы ориентируются относительно друг друга в определенном порядке в соответствии с направлением внешнего поля. Рис. с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

Домены в теории магнетизма - это малые намагниченные области материала, в которых моменты магнтного поля атомов ориентированы параллельно друг другу. Домены отделены друг от друга переходными слоями, называемыми блоховскими стенками. На рисунке показаны два домена с противоположной магнитной ориентацией и блоховская стенка между ними с промежуточной ориентацией. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл оказывается ненамагниченным. При наложении же внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном магнитном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение.

Следует однако помнить, что все эти рисунки и изображенные на них домены и атомы - всего лишь схемы или модели реальных явлений магнетизма, но не сами явления. Ими пользуются до тех пор, пока они не противоречат наблюдаемым фактам.

Простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. Показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.htmll

Возникновение магнитного поля в окрестностях проводника, по которому пропущен постоянный электрический ток, иллюстрирует электромагнит. Ток проходит по проводу, который намотан на стержень из ферромагнетика. Намагничивающая сила в этом случае равна произведению величины электрического тока в катушке на число витков в ней. Эта сила измеряется в амперах. Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки. В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н .

Индукция магнитного поля - это векторная величина, которая является силовой характеристикой магнитного поля. Направление магнитной индукции совпадает с направлением, который указывает магнитная стрелка в магнитном поле, а модуль данного вектора равен отношению модуля магнитной силы, которая действует на движущуюся перпендикулярно заряженную частицу, к модулю скорости и заряда этой частицы. Магнитная индукция согласно СИ измеряется в теслах (Тл). В системе СГС магнитная индукция измеряется в гауссах (Гс). При этом 1 Тл = 104 Гс.

Крупные электромагниты с железными сердечниками и очень большим числом витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию в промежутке между полюсами до 6 теслов (Тл). Величина индукции ограничивается механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника.

Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, и установок для создания импульсных магнитных полей был сконструирован П.Л. Капицей в Кембридже и в Институте физических проблем АН СССР, а также Ф. Биттером в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные магнитные поля получают при очень низких температурах.

Вектор магнитной индукции считается одной из физических величин, которая является фундаментальной в теории электромагнетизма, его можно встретить в огромном множестве уравнений, в каких-то случаях непосредственно, а иногда через напряженность магнитного поля, связанную с ним. Еединственной областью в классической теории электромагнетизма, в которой отсутствует вектор магнитной индукции, является, пожалуй, только чистая электростатика.

Ампер в 1825 г. предположил, что в магните в каждом его атоме циркулируют электрические микротоки. Но электрон был открыт лишь в 1897 г., а модель внутренней структуры атома - в 1913 г., почти 100 лет после гениальной догадки Ампера. В 1852 г. В. Вебер предположил, что каждый атом магнитного вещества представляет собой крошечный магнитный диполь. Предельная или полная намагниченность вещества достигается тогда, когда все отдельные атомные магнитики оказываются выстроенными в определенном порядке. Вебер полагал, что сохранять свое упорядочение этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория объясняла намагничивание тел при их соприкосновении с магнитом и их размагничивание при ударе или нагреве. Объяснялось и «размножение» магнитов при разрезании намагниченного куска или магнитного стержня на части, когда у каждой части всегда появлялось два полюса. Однако эта теория не объясняла ни происхождения самих элементарных магнитов, ни явление гистерезиса. В 1890 г. теория Вебера была усвершенствована Дж. Эвингом, заменившим гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые и составляют постоянный магнит.

В 1905 г. П. Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее магнитное поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Ланжевен ввел понятие магнитного момента атомного магнита, равное произведению «магнитного заряда» на расстояние между полюсами. Согласно этой теории, слабый магнетизм парамагнитных материалов объясняется слабым суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.

В 1907 г. П. Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Отдельный домен может иметь линейные размеры порядка 0,01 мм. Домены разделены между собой так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. Такие стенки представляют собой «переходные слои», или микроградиенты в магнитной наноструктуре вещества, в которых происходит изменение направления намагниченности доменов. Имеются два убедительных экспериментальных подтверждения существования доменов. В 1919 г. Г. Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. Для выявления доменной структуры магнита методом порошковых фигур, на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (окись железа). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля - на границах доменов. Такую структуру можно изучать под микроскопом. Разработан метод изучения магнитного поля, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.

В свободном атоме железа две его оболочки (K и L ), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй - восемь электронов. В K -оболочке спин одного из электронов положителен, а другого - отрицателен. В L -оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех - отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент атома равен нулю. В M -оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направление

Согласно современным представлениям, образовалась примерно 4,5 млрд лет назад, и с этого момента нашу планету окружает магнитное поле. Все, что находится на Земле, в том числе люди, животные и растения, подвергаются его воздействию.

Магнитное поле простирается до высоты около 100 000 км (рис. 1). Оно отклоняет или захватывает частицы солнечного ветра, губительные для всех живых организмов. Эти заряженные частицы образуют радиационный пояс Земли, а вся область околоземного пространства, в которой они находятся, называют магнитосферой (рис. 2). С освещенной Солнцем стороны Земли магнитосфера ограничена сферической поверхностью с радиусом примерно 10-15 радиусов Земли, а с противоположной стороны она вытянута подобно кометному хвосту на расстояние вплоть до нескольких тысяч радиусов Земли, образуя геомагнитный хвост. Магнитосфера отделена от межпланетного поля переходной областью.

Магнитные полюса Земли

Ось земного магнита наклонена по отношению к оси вращения Земли на 12°. Она располагается примерно на 400 км в стороне от центра Земли. Точки, в которых эта ось пересекает поверхность планеты, - магнитные полюса. Магнитные полюсаЗемли не совпадают с истинными географическими полюсами. В настоящее время координаты магнитных полюсов следующие: северный — 77° с.ш. и 102° з.д.; южный — (65° ю.ш. и 139° в.д.).

Рис. 1. Строение магнитного поля Земли

Рис. 2. Строение магнитосферы

Силовые линии, идущие от одного магнитного полюса к другому, называются магнитными меридианами . Между магнитным и географическим меридианом образуется угол, называемый магнитным склонением . Каждое место на Земле имеет свой угол склонения. В районе Москвы угол склонения равен 7° к востоку, а в Якутске — около 17° к западу. Это значит, что северный конец стрелки компаса в Москве отклоняется на Т вправо от географического меридиана, проходящего через Москву, а в Якутске — на 17° влево от соответствующего меридиана.

Свободно подвешенная магнитная стрелка располагается горизонтально только на линии магнитного экватора, который не совпадает с географическим. Если двигаться к северу от магнитного экватора, то северный конец стрелки будет постепенно опускаться. Угол, образованный магнитной стрелкой и горизонтальной плоскостью, называют магнитным наклонением . На Северном и Южном магнитных полюсах магнитное наклонение наибольшее. Оно равно 90°. На Северном магнитном полюсе свободно подвешенная магнитная стрелка установится вертикально северным концом вниз, а на Южном магнитном полюсе ее южный конец опустится вниз. Таким образом, магнитная стрелка показывает направление силовых линий магнитного ноля над земной поверхностью.

С течением времени положение магнитных полюсов относительно по земной поверхности меняется.

Магнитный полюс был открыт исследователем Джеймсом К. Россом в 1831 г. в сотнях километров от его нынешнего местонахождения. В среднем за один год он перемещается на 15 км. В последние годы скорость перемещения магнитных полюсов резко возросла. Например, Северный магнитный полюс сейчас перемещается со скоростью около 40 км в год.

Смена магнитных полюсов Земли называется инверсией магнитного поля .

На протяжении геологической истории нашей планеты земное магнитное поле изменяло свою полярность более 100 раз.

Магнитное поле характеризуется напряженностью. В некоторых местах Земли магнитные силовые линии отклоняются от нормального поля, образуя аномалии. Например, в районе Курской магнитной аномалии (КМА) напряженность поля в четыре раза выше нормы.

Существуют суточные изменения магнитного поля Земли. Причина этих изменений магнитного поля Земли — электриче- с кие токи, текущие в атмосфере на большой высоте. Вызваны они солнечным излучением. Пол действием солнечного ветра магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров. Основной же причиной возникновения солнечного ветра, как мы уже знаем, являются грандиозные выбросы вещества из короны Солнца. При движении к Земле они превращаются в магнитные облака и приводят к сильным, иногда экстремальным возмущениям на Земле. Особенно сильные возмущения магнитного поля Земли - магнитные бури. Некоторые магнитные бури начинаются неожиданно и почти одновременно по всей Земле, а другие развиваются постепенно. Они могут продолжаться несколько часов и даже суток. Часто магнитные бури происходят через 1-2 дня после солнечной вспышки из-за прохождения Земли через поток частиц, выброшенных Солнцем. Исходя из времени запаздывания скорость такого корпускулярного потока оценивают в несколько миллионов км/ч.

Во время сильных магнитных бурь нарушается нормальная работа телеграфа, телефона и радио.

Магнитные бури часто наблюдаются на широте 66-67° (в зоне полярных сияний) и возникают одновременно с полярными сияниями.

Строение магнитного поля Земли меняется в зависимости от широты местности. Проницаемость магнитного поля увеличивается в сторону полюсов. Над полярными областями силовые линии магнитного поля более или менее перпендикулярны земной поверхности и имеют воронкообразную конфигурацию. Через них часть солнечного ветра с дневной стороны проникает в магнитосферу, а затем и в верхнюю атмосферу. Сюда же в период магнитных бурь устремляются частицы из хвостовой части магнитосферы, достигая границ верхней атмосферы в высоких широтах Северного и Южного полушарий. Именно эти заряженные частицы вызывают здесь полярные сияния.

Итак, магнитные бури и суточные изменения магнитного ноля объясняются, как мы уже выяснили, солнечным излучением. Но какова основная причина, создающая постоянный магнетизм Земли? Теоретически удалось доказать, что на 99 % магнитное поле Земли вызывают источники, скрытые внутри планеты. Главное магнитное поле обусловлено источниками, расположенными в глубинах Земли. Их можно условно разделить на две группы. Основная их часть связана с процессами в земном ядре, где вследствие непрерывных и регулярных перемещений электропроводящего вещества создается система электрических токов. Другая — связана с тем, что горные породы земной коры, намагничиваясь главным электрическим полем (полем ядра), создают собственное магнитное поле, которое суммируется с магнитным полем ядра.

Кроме магнитного поля вокруг Земли существуют и другие поля: а) гравитационное; б) электрическое; в) тепловое.

Гравитационным полем Земли называют поле силы тяжести. Она направлена по отвесу перпендикулярно к поверхности геоида. Если бы у Земли была фигура эллипсоида вращения и в нем равномерно распределялись бы массы, то у нее было нормальное гравитационное поле. Разница между напряженностью реального гравитационного поля и теоретического — аномалия тяжести. Различный вещественный состав, плотность горных пород вызывают эти аномалии. Но возможны и другие причины. Их можно объяснить следующим процессом — уравновешение твердой и относительно легкой земной коры на более тяжелой верхней мантии, где и происходит выравнивание давления вышележащих слоев. Эти течения вызывают тектонические деформации, движение литосферных плит и тем самым создают макрорельеф Земли. Сила тяжести удерживает атмосферу, гидросферу, людей, животных на Земле. Силу тяжести нужно обязательно учитывать при изучении процессов в географической оболочке. Термином «геотропизм » называют ростовые движения органов растений, которые под влиянием силы земного тяготения всегда обеспечивают вертикальное направление роста первичного корня перпендикулярно поверхности Земли. Гравитационная биология использует растения в качестве экспериментальных объектов.

Если не учитывать силу тяжести, невозможно рассчитать исходные данные для запуска ракет и космических кораблей, сделать гравиметрическую разведку рудных ископаемых и, наконец, невозможно дальнейшее развитие астрономии, физики и других наук.

Магнитным полем называется особый, отличный от вещества, вид материи через которую передается действие магнита на другие тела.

Магнитное поле возникает в пространстве, окружающем движущиеся электрические заряды и постоянные магниты. Оно воздействует только на движущиеся заряды. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются

От своего первоначального пути в направлении, перпендикулярном полю.

Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля, и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 ООО км/с.

Общеизвестно действие постоянных магнитов и электромагнитов на ферромагнитные тела, существование и неразрывное единство полюсов магнитов и их взаимодействие (разноименные полюсы притягиваются, одноименные отталкиваются). По аналогии

с магнитными полюсами Земли полюсы магнитов называют северным и южным.

Магнитное поле наглядно изображается магнитными силовыми линиями, которые задают направление магнитного поля в пространстве (рис..1). Эти линии не имеют ни начала, ни конца, т.е. являются замкнутыми.

Силовые линии магнитного поля прямолинейного проводника представляют собой концентрические окружности, охватывающие провод. Чем сильнее ток, тем сильнее магнитное поле вокруг провода. При удалении от провода с током магнитное поле ослабевает.

В пространстве, окружающем магнит или электромагнит, за положительное направление магнитных силовых линий условно принято направление от северного полюса к южному. Чем интенсивнее магнитное поле, тем выше плотность силовых линий.

Направление магнитных силовых линий определяется правилом буравчика :.

Рис. 1. Магнитное поле магнитов:

а - прямого; б - подковообразного

Рис. 2. Магнитное поле:

а - прямого провода; б - индуктивной катушки

Если ввинчивать винт по направлению тока, то магнитные магнитные силовые линии будут направлены по ходу винта (рис.2 а)

Для получения более сильного магнитного поля применяют индуктивные катушки с обмоткой из проволоки. В этом случае магнитные поля отдельных витков индуктивной катушки складываются и их силовые линии сливаются в общий магнитный поток.

Магнитные силовые линии выходят из индуктивной катушки

на том конце, где ток направлен против хода часовой стрелки, т. е. этот конец является северным магнитным полюсом (рис.2, б).

При изменении направления тока в индуктивной катушке изменится и направление магнитного поля.