Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Нечеткие множества. Раздел Fuzzy Logic Toolbox. С.Д.Штовба. Введение в теорию нечетких множеств и нечеткую логику

В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков

Нечеткие множества в системах управления

Под редакцией
доктора технических наук, профессора Ю.Н. Золотухина


Предисловие. 3

ВВЕДЕНИЕ.. 4

1. НЕЧЕТКИЕ МНОЖЕСТВА.. 5

Примеры записи нечеткого множества. 5

Основные характеристики нечетких множеств. 5

Примеры нечетких множеств. 6

О методах построения функций принадлежности нечетких множеств. 7

Операции над нечеткими множествами. 8

Наглядное представление операций над нечеткими множествами. 9

Свойства операций È и Ç. 9

Алгебраические операции над нечеткими множествами. 10

Расстояние между нечеткими множествами, индексы нечеткости. 13

Принцип обобщения. 16

2. НЕЧЕТКИЕ ОТНОШЕНИЯ.. 17

Операции над нечеткими отношениями. 18

Композиция двух нечетких отношений. 21

Условные нечеткие подмножества. 23

3. НЕЧЕТКАЯ И ЛИНГВИСТИЧЕСКАЯ ПЕРЕМЕННЫЕ.. 27

Нечеткие числа. 28

Операции над нечеткими числами. 28

Нечеткие числа (L-R)-типа. 29

4. НЕЧЕТКИЕ ВЫСКАЗЫВАНИЯ И НЕЧЕТКИЕ МОДЕЛИ СИСТЕМ... 32

Правила преобразований нечетких высказываний. 33

Способы определения нечеткой импликации. 33

Логико-лингвистическое описание систем, нечеткие модели. 35

Модель управления паровым котлом.. 36

Полнота и непротиворечивость правил управления. 39

Литература. 40

Предисловие

Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, ╬ 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества , допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy ). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

В последние 5-7 лет началось использование новых методов и моделей в промышленности. И хотя первые применения нечетких систем управления состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.

Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".

Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.

Основная цель предлагаемого вниманию читателей учебного пособия - привлечь внимание студентов, аспирантов и молодых научных сотрудников к нечеткой проблематике и дать доступное введение в одну из интереснейших областей современной науки.

профессор Ю.Н.Золотухин

ВВЕДЕНИЕ

Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

1. НЕЧЕТКИЕ МНОЖЕСТВА

Пусть E - универсальное множество, x - элемент E , а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция , принимающая значение 1 , если x удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей . Если M = {0,1} , то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

По традиции четкие множества принято иллюстрировать кругами с резко оконтуренными границами. Нечеткие же множества – это круги, образованные отдельными точками: в центре круга точек много, а ближе к периферии их густота уменьшается до нуля; круг как бы растушевывается на краях. Такие «нечеткие множества» можно увидеть... в тире – на стене, куда вывешиваются мишени. Следы от пуль образуют случайные множества, математика которых известна. Оказалось, что для оперирования нечеткими множествами годится уже давно разработанный аппарат случайных множеств...

Понятие нечеткого множества – попытка математической формализации нечеткой информации с целью ее использования при построении математических моделей сложных систем. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно, принадлежать данному множеству с различной степенью.

Один из простейших способов математического описания нечеткого множества – характеризация степени принадлежности элемента множеству числом, например, из интервала . Пусть Х – некоторое множество элементов. В дальнейшем мы будем рассматривать подмножества этого множества.

Нечетким множеством А в Х называется совокупность пар вида (x, m A (x) ), где xÎX, а m А – функция x ® , называемая функцией принадлежности (membership function) нечеткого множества А . Значение m A (x) этой функции для конкретного x называется степенью принадлежности этого элемента нечеткому множеству А .

Как видно из этого определения, нечеткое множество вполне описывается своей функцией принадлежности, поэтому мы часто будем использовать эту функцию как обозначение нечеткого множества.

Обычные множества составляют подкласс класса нечетких множеств. Действительно, функцией принадлежности обычного множества B ÌX является его характеристическая функция: m В (x) =1, если x ÎB и m В (x) =0, если x ÏB. Тогда в соответствии с определением нечеткого множества обычное множество В можно также определить как совокупность пар вида (x, m В (x) ). Таким образом, нечеткое множество представляет собой более широкое понятие, чем обычное множество, в том смысле, что функция принадлежности нечеткого множества может быть, вообще говоря, произвольной функцией или даже произвольным отображением.

Мы говорим нечеткое множество . А множество чего? Если быть последовательным, то приходится констатировать, что элементом нечеткого множества оказывается... новое нечеткое множество новых нечетких множеств и т.д. Обратимся к классическому примеру – к куче зерна . Элементом этого нечеткого множества будет миллион зерен , например. Но миллион зерен это никакой не четкий элемент , а новое нечеткое множество . Ведь считая зерна (вручную или автоматически), немудрено и ошибиться – принять за миллион 999 997 зерен, например. Тут можно сказать, что элемент 999 997 имеет значение функции принадлежности к множеству “миллион”, равное 0.999997. Кроме того, само зерно – это опять же не элемент, а новое нечеткое множество: есть полноценное зерно, а есть два сросшихся зерна, недоразвитое зерно или просто шелуха. Считая зерна, человек должен какие-то отбраковывать, принимать два зерна за одно, а в другом случае одно зерно за два. Нечеткое множество не так-то просто запихнуть в цифровой компьютер с классическими языками: элементами массива (вектора) должны быть новые массивы массивов (вложенные вектора и матрицы, если говорить о Mathcad ). Классическая математика четких множеств (теория чисел, арифметика и т.д.) – это крюк, с помощью которого человек разумный фиксирует (детерминирует) себя в скользком и нечетком окружающем мире. А крюк, как известно, – инструмент довольно грубый, нередко портящий то, за что им цепляются. Термины, отображающие нечеткие множества – «много», «слегка», «чуть-чуть» и т.д. и т.п., – трудно «запихнуть» в компьютер еще и потому, что они контекстно зависимы . Одно дело сказать «Дай мне немного семечек» человеку, у которого стакан семечек, а другое дело – человеку, сидящему за рулем грузовика с семечками.



Нечеткое подмножество А множества Х характеризуется функцией принадлежности m A : Х→ , которая ставит в соответствие каждому элементу x ÎX число m A (x) из интервала , характеризующее степень принадлежности элемента х подмножеству А . Причем 0 и 1 представляют соответственно низшую и высшую степень принадлежности элемента к определенному подмножеству.

Дадим основные определения.

· Величина sup m A (x ) называется высотой нечеткого множества A . Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности равна 1. При sup m A (x )<1 нечеткое множество называется субнормальным.

· Нечеткое множество называется пустым , если его функция принадлежности равна нулю на всем множестве Х , т.е. m 0 (x)= 0 " x ÎX .

Нечеткое множество пусто , если " x ÎE m A (x )=0 . Непустое субнормальное множество можно нормализовать по формуле

(рис. 1).

Рис.1. Нормализация нечеткого множества с функцией принадлежности. .

Носителем нечеткого множества А (обозначение supp A ) с функцией принадлежности m A (x) называется множество вида suppA ={x|x ÎX, m A (x)> 0}. Для практических приложений носители нечетких множеств всегда ограничены. Так, носителем нечеткого множества допустимых режимов для системы может служить четкое подмножество (интервал), для которого степень допустимости не равна нулю (рис.2).

Рис. 3. Ядро, носитель и α- сечение нечеткого множества

Значение α называют α -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) α -уровне.

Рис. 3 иллюстрирует определения носителя, ядра, α- сечения и α- уровня нечеткого множества.

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Обобщение понятия принадлежности. В рассмотренных примерах характеристическая функция принимала значения 0 или 1. Предположим, что характеристическая функция принимает любое значение из . Тогда элемент может не принадлежать множеству , принадлежать в какой-либо степени или быть элементом множества .

Нечёткое множество . Нечётким подмножеством (нечётким множеством) множества называется множество упорядоченных пар , где – функция принадлежности элемента множеству , характеризующая степень принадлежности элемента этому множеству, или, другими словами, меру соответствия элемента универсального множества свойствам нечёткого множества . В случае непрерывного множества для задания нечёткого множества используют такое обозначение: .

Множество принадлежностей. Множество значений функции принадлежности называется Множеством принадлежностей . Если , то – обычное множество, т. е. чёткое множество можно рассматривать как предельный случай нечёткого множества. Далее в этом учебном пособии множество принадлежностей .

Мощность нечёткого множества. Пусть на универсальном множестве задано нечёткое множество . Мощность нечёткого множества или его Кардинальное число определяется следующим образом: .

Пример 28. На универсальном множестве определим следующее нечёткое множество:

Определим кардинальное число нечёткого множества :

Принадлежность элемента нечёткому множеству можно обозначать и так: .

Для определения степени принадлежности элемента нечёткому множеству существует специальная терминология. Так, нечёткое множество , заданное в Примере 28, содержит в незначительной степени элемент , не содержит , в небольшой степени содержит , в значительной степени – и , и содержит элемент .

Пример 29. Нечёткое множество небольших натуральных чисел может быть задано, например, так:

Замечание. Значения заданы субъективно.

Носитель нечёткого множества. Носителем (суппортом) нечёткого множества (supp) называется множество элементов , для которых . пустым, если его носитель является пустым множеством.

Ядро нечёткого множества. Ядром Нечёткого множества () называется множество элементов , для которых .

Высота нечёткого множества . Величина ( для дискретных универсальных множеств) называется Высотой нечёткого множества ().

Нормальные и субнормальные нечёткие множества . Нечёткое множество Нормально , если его высота равна 1. Если высота меньше 1, то нечёткое множество называется Субнормальным . Всякое непустое субнормальное нечёткое множество можно преобразовать к нормальному , нормируя его функцию принадлежности:

Унимодальные нечёткие множества. Нечёткое множество называется Унимодальным , если только для одного .

Точки перехода нечётких множеств. Элементы , для которых , называются Точками перехода нечёткого множества .

Выпуклые нечёткие множества . Нечёткое множество называется Выпуклым , если:

Пример 30. Пусть универсальное множество есть множество действительных чисел, т. е. . Определим нечёткое множество как множество чисел, близких к числу (Рис. 4).

Рисунок 4

Функцию принадлежности можно задать следующим образом: , где . Показатель степени выбирается в зависимости от степени близости к . Например, для описания множества чисел, очень близких к , можно взять ; для множества чисел, не очень далеких от , .

Пример 31. На универсальном множестве из Примера 28 Задано нечёткое множество . Для нечёткого множества : 1) определить его мощность; 2) определить носитель, ядро и высоту; 3) выяснить, является ли оно нормальным или субнормальным. Если является субнормальным, преобразовать его к нормальному; 4) проверить, будет ли полученное множество унимодальным; 5) определить точки перехода .

1. По определению, мощность (кардинальное число) нечёткого множества , заданного на конечном универсальном множестве , определяется по формуле: .

2. Воспользуемся определениями носителя, ядра и высоты нечёткого множества. Очевидно, , , .

3. Заданное нечёткое множество является субнормальным. Построим соответствующее ему нечёткое нормальное множество . Для этого вычислим значения функции принадлежностей элементов по формуле:

Имеем: , аналогично: , , , , . Таким образом, нечёткое нормализованное множество .

4. Множество является унимодальным, так как содержит только один элемент , для которого .

5. Множество имеет единственную точку перехода – , так как только .

Умножение нечётких множеств на число. Если – такое положительное число, что , то для нечёткого множества функция принадлежности определяется следующим образом: .

Сравнение нечётких множеств. Рассмотрим два нечётких множества и , заданных на универсальном множестве .

Говорят, что Содержится в , т. е. , если для любого . Графически это означает, что кривая, задающая нечёткое множество располагается выше аналогичной кривой нечёткого множества . Если условие включения выполняется не для всех , то говорят о Степени включения в , которая определяется как , где – множество , на котором выполняется условие включения.

Два нечётких множества и Равны , если они содержатся друг в друге, т. е. , если для любого .

Подмножество -уровня. Подмножеством -уровня нечёткого множества , , называется чёткое подмножество элементов , для которых . Множество называют также -сечением нечёткого множества . При этом, если , то говорят о сильном сечении, а если , то о слабом сечении. Имеет место Важное свойство : если , то .

Для анализа и синтеза нечётких множеств применяют Теорему о декомпозиции: нечёткое множество можно разложить по его множествам -уровня следующим образом: , где – произведение числа на множество .

Пример 32. На универсальном множестве определим нечёткое множество . Найдём все подмножества нечёткого множества :

По теореме о декомпозиции нечётких множеств заданное нечёткое множество представим следующим образом.

Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть X – универсальное (базовое) множество, x – элемент X , а R – некоторое свойство. Обычное (четкое) подмножество A универсального множества X , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар
A = μ A x / x , где μ A x – характеристическая функция, принимающая значение 1 , если x удовлетворяет свойству R , и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из X нет однозначного ответа «да-нет» относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества X определяется как множество упорядоченных пар A = μ A x / x , где μ A x – характеристическая функция принадлежности (или просто функция принадлежности ), принимающая значения в некотором вполне упорядоченном множестве M = 0 ; 1 . Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей. Если M = 0 ; 1 , то нечеткое подмножество A может рассматриваться как обычное или четкое множество. Степень принадлежности μ A x является субъективной мерой того, насколько элемент x ∈ X , соответствует понятию, смысл которого формализуется нечетким множеством A .

Носителем нечеткого множества A является четкое подмножество S A универсального множества X со свойством μ A x > 0 , т.е. S A = x ∣ x ∈ X ∧ μ A x > 0 . Иными словами, носителем нечеткого множества A является подмножество S A универсального множества X , для элементов которого функция принадлежности μ A x > 0 больше нуля. Иногда носитель нечеткого множества обозначают support A .

Если носителем нечеткого множества A является дискретное подмножество S A , то нечеткое подмножество A универсального множества X , состоящего из n элементов, можно представить в виде объединения конечного числа одноточечных множеств μ A x / x при помощи символа ∑ : A = ∑ i = 1 n μ A x i / x i . При этом подразумевается, что элементы x i упорядочены по возрастанию в соответствии со своими индексами, т.е. x 1 < x 2 < x 3 < … < x n .

Если носителем нечеткого множества A является непрерывное подмножество S A , то нечеткое подмножество A универсального множества X , рассматривая символ ∫ как непрерывный аналог введенного выше символа объединения для дискретных нечетких множеств ∑ , можно представить в виде объединения бесконечного числа одноточечных множеств μ A x / x:

A = ∫ X μ A x / x .

Пример. Пусть универсальное множество X соответствует множеству возможных значений толщин изделия от 10 мм до 40 мм с дискретным шагом 1 мм. Нечеткое множество A , соответствующее нечеткому понятию «малая толщина изделия», может быть представлено в следующем виде:

A = 1 / 10 ; 0,9 / 11 ; 0,8 / 12 ; 0,7 / 13 ; 0,5 / 14 ; 0,3 / 15 ; 0,1 / 16 ; 0 / 17 ; … ; 0 / 40 ,

A = 1 / 10 + 0,9 / 11 + 0,8 / 12 + 0,7 / 13 + 0,5 / 14 + 0,3 / 15 + 0,1 / 16 + 0 / 17 + … + 0 / 40 ,

где знак суммирования обозначает не операцию арифметического сложения, а объединения элементов в одно множество. Носителем нечеткого множества A будет конечное подмножество (дискретный носитель):

S A = 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 .

Если же универсальное множество X является множеством действительных чисел от 10 до 40 , т.е. толщина изделия может принимать все возможные значения в этих пределах, то носителем нечеткого множества A является отрезок S A = 10 ; 16 .

Нечеткое множество с дискретным носителем может быть представлено в виде отдельных точек на плоскости, нечеткое множество с непрерывным носителем может быть представлено в виде кривой, что соответствует дискретной и непрерывной функциям принадлежности μ A x , заданным на универсальном множестве X (рис.2.1).

Рис.2.1. Функции принадлежности нечетких множеств с (а)-дискретным и (б)-непрерывным носителями

Пример. Пусть X = 0 ; 1 ; 2 ; … – множество целых неотрицательных чисел. Нечеткое множество ital малый можно определить как μ ital малый x = x 1 + 0,1 x 2 − 1 .

Рис.2.2. Графическое представление нечеткого множества малый

Нечеткое множество A называется конечным , если его носитель S A является конечным четким множеством. При этом, по аналогии с обычными множествами, можно говорить, что такое нечеткое множество имеет конечную мощность card A = card S A . Нечеткое множество A называется бесконечным , если его носитель S A не является конечным четким множеством. При этом счетным нечетким множеством будет называться нечеткое множество с счетным носителем, имеющим счетную мощность в обычном смысле в терминах теории четких множеств, т.е. если S A содержит бесконечное число элементов, которые однако можно пронумеровать натуральными числами 1,2 ,3 . . . , причем достичь последнего элемента при нумерации принципиально невозможно. Несчетным нечетким множеством будет называться нечеткое множество со несчетным носителем, имеющим несчетную мощность континуума , т.е. если S A содержит бесконечное число элементов, которые невозможно пронумеровать натуральными числами 1,2 ,3 . . .

Пример. Нечеткое понятие «очень маленькое количество деталей» может быть представлено в виде конечного нечеткого множества A = 1 / 0 + 0,9 / 1 + 0,8 / 2 + 0,7 / 3 + 0,5 / 4 + 0,1 / 5 + 0 / 6 + … с мощностью card (A) = 6 и носителем S A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 , который является конечным четким множеством. Нечеткое понятие «очень большое количество деталей» может быть представлено в виде A = 0 / 0 + … + 0,1 / 1 0 + 0,4 / 11 + 0,7 / 12 + 0,9 / 13 + 1 / 14 + 1 / 15 + … + 1 / n + … , n ∈ N – нечеткого множества с бесконечным счетным носителем S A ≡ N (множество натуральных чисел), который имеет счетную мощность в обычном смысле.

Пример. Несчетное нечеткое множество A , соответствующее нечеткому понятию «очень горячо», задано на универсальном множестве значений температур (в Кельвинах) температурой x ∈ [ 0 ; ∞) и функцией принадлежности μ A = 1 − e − x , с носителем S A ≡ R + (множество неотрицательных действительных чисел), который имеет несчетную мощность континуума.

Величина sup x ∈ X μ A x называется высотой нечеткого множества.

Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности sup x ∈ X μ A x = 1 . При sup x ∈ X μ A x < 1 субнормальным.

Нечеткое множество называется пустым , если ∀ x ∈ X μ A x = 0 .

Непустое субнормальное множество всегда можно нормализовать, разделив все значения функции принадлежности на ее максимальное значение μ A x sup x ∈ X μ A x .

Нечеткое множество называется унимодальным , если μ A x = 1 только для одной точки x (моды ) универсального множества X .

Нечеткое множество называется точечным , если μ A x > 0 только для одной точки x универсального множества X .

Множеством α -уровня нечеткого множества A , определенного на универсальном множества X , называется четкое подмножество A α универсального множества X , определяемое в виде:

A α = x ∈ X ∣ μ A x ≥ α , где α ∈ 0 ; 1 .

Пример. A = 0,8 / 1 + 0,6 / 2 + 0,2 / 3 + 1 / 4 , A 0,5 = 1 ; 2 ; 4 , где A 0,5 – четкое множество, включающее те элементы x упорядоченных пар μ A x / x , составляющих нечеткое множество A , для которых значение функции принадлежности которых удовлетворяет условию μ A x ≥ α .

Для множеств α -уровня выполняется следующее свойство: если α 1 ≥ α 2 , то мощность подмножества A α 1 не больше мощности подмножества A α 2 .

Элементы x ∈ X , для которых μ A x = 0,5 называются точками перехода нечеткого множества A .

Ядром нечеткого множества A , определенного на универсальном множестве X , называется четкое множество core A , элементы которого удовлетворяют условию core A = x ∈ X ∣ μ A x = 1 .

Границей нечеткого множества A , определенного на универсальном множестве X , называется четкое множество front A , элементы которого удовлетворяют условию front A = x ∈ X ∣ 0 < μ A x < 1 .

Пример. Пусть X = 0 ; 1 ; 2 ; … ; 10 , M = 0 ; 1 . Нечеткое множество несколько можно определить на универсальном множестве натуральных чисел следующим образом: несколько = 0,5 / 3 + 0,8 / 4 + 1 / 5 + 1 / 6 + 0,8 / 7 + 0,5 / 8 ; его характеристики: высота = 1 , носитель = 3 ; 4 ; 5 ; 6 ; 7 ; 8 , точки перехода = 3 ; 8 , ядро = 5 ; 6 , граница = 3 ; 4 ; 7 ; 8 .

Нечеткое множество A , определенное на универсальном множестве X , называется выпуклым , если μ A x ≥ min μ A a ; μ A b ; a < x < b ; x , a , b ∈ X (рис.2.3).

Рис.2.3. Функции принадлежности выпуклого и невыпуклого нечетких множеств