Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Множества: понятие, определение, примеры. Понятие множества. Способы задания множеств

Элементы теории множеств. Множества и операции над ними

Понятие множества является одним из основных математических понятий. Это неопределяемое понятие, его можно только описать или пояснить на примерах. Так, можно говорить о множестве букв в латинском алфавите, множество всех книг в данной библиотеке, множестве студентов в данной группе, множестве всех точек данной линии. Чтобы задать множество, достаточно перечислить элементы или указать характеристические свойства элементов, т.е. такое свойство, которым обладают все элементы данного множества и только они.

Определение 1.1. Предметы (объекты), составляющие некоторое множество, называются его элементами .

Множество принято обозначать прописными латинскими буквами, а элементы множества – строчными буквами. То, что x является элементом множества A , записывается так: x A (x принадлежит A ). Запись вида x A (x A ) означает, что x не принадлежит A , т.е. не является элементом множества A .

Элементы множества принято записывать в фигурных скобках. Например, если A – множество, состоящее из первых трех букв латинского алфавита, то его записывают так: A= {a,b,c }.

Множество может содержать бесконечно много элементов (множество точек прямой, множество натуральных чисел), конечное число элементов (множество школьников в классе), либо вообще не содержать ни одного элемента (множество студентов пустой аудитории).

Определение 1.2. Множество, не содержащее ни одного элемента, называется пустым множеством , обозначается Ø.

Определение 1.3. Множество A называется подмноже-ством множества B , если каждый элемент множества A принадлежит и множеству B . Это обозначается A B (A – подмножество B ).

Пустое множество считают подмножеством любого множества. Если множество A не является подмножеством множества B , то пишут A B.

Определение 1.4. Два множества A и B называют равными , если являются подмножествами друг друга. Обозначают A = B. Это означает, что если x A , то x B и наоборот, т.е. если и , то .

Определение 1.5. Пересечение множеств A и B называют множество M , элементы которого являются одновременно элементами обоих множеств A и B. Обозначают M= A B. Т.е. x A B , то x A и x B.

Записывают A B= { x | x A и x B }. (Вместо союза и – ставятся знаки , &).

Определение 1.6. Если A B= Ø, то говорят, что множества A и B не пересекаются.

Аналогично можно определить пересечение 3-х, 4-х и любого конечного числа множеств.

Определение 1.7. Объединением множеств A и B называют множество M , элементы которого принадлежат хотя бы одному из данных множеств.Обозначают M=A B. Т.о. A B= { x | x A или x B }. (Вместо союза или – ставится знак ).

Аналогично определяется и множество A 1 A 2 A n . Оно состоит из элементов, каждый из которых принадлежит хотя бы одному из множеств A 1 , A 2 ,…, A n (а может быть, и нескольким сразу).

Пример 1.8. 1) если A= {1;2;3;4;5} и B= {1;3;5;7;9}, то A B= {1;3;5} и A B= {1;2;3;4;5;7;9}.

2) если A= {2;4} и B= {3;7}, то A B= Ø и A B= {2;3;4;7}.

3) если A= {летние месяцы} и B= {месяцы, в которых 30 дней}, то A B= {июнь} и A B= {апрель; июнь; июль; август; сентябрь; ноябрь}.

Определение 1.9. Натуральными называются числа 1,2,3,4,…, используемые для счета предметов.

Множество натуральных чисел обозначается N, N={1;2;3;4;…;n;…}. Оно является бесконечным, имеет наименьший элемент 1 и не имеет наибольшего элемента.

Пример 1.10. A – множество натуральных делителей числа 40. Перечислить элементы этого множества. Верно ли, что 5 A, 10 A, -8 A, 4 A, 0 A, 0 A.

A = {1,2,4,5,8,10,20,40}. (В,В,Н,Н,Н,В)

Основные понятия теории множеств

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Если – элемент множества M , то говорят « принадлежит M » и пишут: . Если некоторый объект не является элементом множества, то говорят « не принадлежит M » и пишут (иногда ).

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M , а всякий элемент, не обладающий этим свойством, не принадлежит M . Множество элементов, обладающих свойством , обозначается так:

или .

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);



– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Слово «множество» наводит на мысль, что оно содержит много элементов. Но это не всегда так. В математике могут рассматриваться множества, содержащие только один элемент. Например, множество целых корней уравнения . Более того, удобно говорить о множестве, не содержащем ни одного элемента. Такое множество называется пустым и обозначается через Ø. Например, пустым является множество действительных корней уравнения .

Определение 1. Множества и называются равными (обозначается А=В ), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Обозначения: (« включается в »); (« включает »).

Ясно, что Ø и само множество являются подмножествами множества . Всякое другое подмножество множества называется его правильной частью . Если и , то говорят, что « А собственное подмножество »или что «А строго включается в » и пишут .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств : чтобы доказать, что множества и равны, достаточно показать, что , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований .

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U , которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество R действительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна .

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:


– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

и .

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1. Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2. Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3. Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .– заштрихованная часть; . с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множеств илиалгеброй Булямножеств (вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U. Поэтому их и называют законами алгебры множеств.

Людям постоянно приходится иметь дело с различными совокупностями предметов, что повлекло за собой возникновение понятия числа, а затем и понятия множества, которое является одним из основных простейших математических понятий и не поддается точному определению. Нижеследующие замечания имеют своей целью пояснить, что такое множество , но не претендуют на то, чтобы служить его определением.

Множеством называется собрание, совокупность, коллекция вещей, объединенных по какому-либо признаку или по какому-либо правилу. Понятие множества возникает путем абстракции. Рассматривая какую-либо совокупность предметов как множество, отвлекаются от всех связей и соотношений между различными предметами, составляющими множества, но сохраняют за предметами их индивидуальные черты. Таким образом, множество, состоящее из пяти монет, и множество, состоящее из пяти яблок, - это разные множества. С другой стороны, множество из пяти монет, расположенных по кругу, и множество из тех же монет, положенных одна на другую, - это одно и то же множество.

Приведем несколько примеров множеств. Можно говорить о множестве песчинок, составляющих кучу песка, о множестве всех планет нашей солнечной системы, о множестве всех людей, находящихся в данный момент в каком-либо доме, о множестве всех страниц этой книги. В математике тоже постоянно встречаются различные множества, например множество всех корней заданного уравнения, множество всех натуральных чисел, множество всех точек на прямой и т. д.

Математическая дисциплина, изучающая общие свойства множеств, т. е. свойства множеств, не зависящие от природы составляющих их предметов, называется теорией множеств. Эта дисциплина начала бурно развиваться в конце XIX и начале XX в. Основатель научной теории множеств - немецкий математик Г. Кантор.

Работы Кантора по теории множеств выросли из рассмотрения вопросов сходимости тригонометрических рядов. Это весьма обычное явление: очень часто рассмотрение конкретных математических задач ведет к построению весьма абстрактных и общих теорий. Значение таких абстрактных построений определяется тем, что они оказываются связанными не только с той конкретной задачей, из которой они выросли, но имеют приложения и в ряде других вопросов. В частности, именно так обстоит дело и с теорией множеств. Идеи и понятия теории множеств проникли буквально во все разделы математики и существенно изменили ее лицо. Поэтому нельзя получить правильного представления о современной математике, не познакомившись с элементами теории множеств. Особенно большое значение имеет теория множеств для теории функций действительного переменного.

Множество считается заданным, если относительно любого предмета можно сказать, принадлежит он множеству или не принадлежит. Иными словами, множество вполне определяется заданием всех принадлежащих ему предметов. Если множество \(M\) состоит из предметов \(a,\,b,\,c,\,\ldots\) и только из этих предметов, то пишут

\(M=\{a,\,b,\,c,\,\ldots\}\)

Предметы, составляющие какое-либо множество, принято называть его элементами. Тот факт, что предмет т является элементом множества \(M\) , записывается в виде

\(\Large{m\in M}\)


и читается: " \(m\) принадлежит \(M\) ", или " \(m\) есть элемент \(M\) ". Если же предмет \(m\) не принадлежит множеству \(M\) , то пишут: \(m\notin M\) . Каждый предмет может служить лишь одним элементом заданного множества; иными словами, все элементы (одного и того же множества отличны
друг от друга.

Элементы множества \(M\) могут сами быть множествами, однако, во избежание противоречий, приходится требовать, чтобы само множество \(M\) не было одним из своих собственных элементов: \(M\notin M\) .

Множество, не содержащее ни одного элемента, называется пустым множеством . Например, множество всех действительных корней уравнения

\(x^2+1=0\)


есть пустое множество. Пустое множество в дальнейшем будем обозначать через \(\varnothing\) .

Если для двух множеств \(M\) и \(N\) каждый элемент \(x\) множества \(M\) является также элементом множества \(N\) , то говорят, что \(M\) входит в \(\) , что \(M\) есть часть \(N\) , что \(M\) есть подмножество \(M\) или что \(M\) содержится в \(N\) ; это записывается в виде

\(M\subseteq N\) или \(N\supseteq M\)

Например, множество \(M=\{1,2\}\) есть часть множества \(N=\{1,2,3\}\) .

Ясно, что всегда \(M\subseteq M\) . Удобно считать, что пустое множество есть часть любого множества.

Два множества равны , если они состоят из одних и тех же элементов. Например, множество корней уравнения \(x^2-3x+2=0\) и множество \(M=\{1,2\}\) между собою равны.

Определим правила действий над множествами .

Объединение или сумма множеств

Пусть имеются множества \(M,N,P,\ldots\) . Объединением или суммой этих множеств называется множество \(X\) , состоящее из всех элементов, принадлежащих хотя бы одному из "слагаемых"

\(X=M+N+P+\ldots\) или \(X=M\cup N\cup P\cup\ldots\)

При этом, даже если элемент \(x\) принадлежит нескольким слагаемым, то он входит в сумму \(M\) лишь один раз. Ясно, что

\(M+M=M\cup M=M\)


и если \(M\subseteq N\) , то

\(M+N=M\cup N=N\)

Пересечение множеств

Пересечением или общей частью множеств \(M,N,P,\ldots\) . называется множество \(Y\) , состоящее из всех тех элементов, которые принадлежат одновременно всем множествам \(M,N,P,\ldots\) .

Ясно, что \(M\cdot M=M\) , и если \(M\subseteq N\) , то \(M\cdot N=M\) .

Если пересечение множеств \(M\) и \(N\) пусто: \(M\cdot N=\varnothing\) , то говорят, что эти множества не пересекаются .

Для обозначения операции суммы и пересечения множеств употребляют также знаки \(\textstyle{\sum}\) и \(\textstyle{\prod}\) . Таким образом,

\(E=\sum E_i\) есть сумма множеств \(E_i\) , a \(F=\prod E_i\) - их пересечение.

\(M(N+P)=MN+MP,\)


а также законом

\(M+NP=(M+N)(M+P).\)

Разность множеств

Разностью двух множеств \(M\) и \(N\) называется множество \(Z\) всех тех элементов из \(Z\) , которые не принадлежат \(N\) :

\(Z=M-N\) или \(Z=M\setminus N\) .

Если \(N\subseteq M\) , то разность \(Z=M\setminus N=M-N\) называют также дополнением к множеству \(N\) относительно \(M\) .

Нетрудно показать, что всегда

\(M(N-P)=MN-MP\) и \((M-N)+MN=M.\)

Таким образом, правила действий над множествами значительно отличаются от обычных правил арифметики.

Конечные и бесконечные множества

Множества, состоящие из конечного числа элементов, называются конечными множествами. Если же число элементов множества неограниченно, то такое множество называется бесконечным. Например, множество всех натуральных чисел бесконечно.

Рассмотрим два каких-либо множества \(M\) и \(N\) и поставим вопрос о том, одинаково или нет количество элементов в этих множествах.

Если множество \(M\) конечно, то количество его элементов характеризуется некоторым натуральным числом - числом его элементов. В этом случае для сравнения количества элементов множеств \(M\) и \(N\) достаточно сосчитать число элементов в \(M\) , число элементов в \(N\) и сравнить полученные числа. Естественно также считать, что если одно из множеств \(M\) и \(N\) конечно, а другое бесконечно, то бесконечное множество содержит больше элементов, чем конечное.

Однако, если оба множества \(M\) и \(N\) бесконечны, то путь простого счета элементов ничего не дает. Поэтому сразу возникают такие вопросы: все ли бесконечные множества имеют одинаковое количество элементов, или же существуют бесконечные множества с большим и меньшим количеством элементов? Если верно второе, то каким способом можно сравнивать между собой количество элементов в бесконечных множествах? Этими вопросами мы теперь и займемся.

Взаимно однозначное соответствие множеств

Пусть снова \(M\) и \(N\) - два конечных множества. Как узнать, какое из этих множеств содержит больше элементов, не считая числа элементов в каждом множестве? Для этого будем составлять пары, объединяя в пару один элемент из \(M\) и один элемент из \(N\) . Тогда, если какому-нибудь элементу из \(M\) не найдется парного к нему элемента из \(N\) , то в \(M\) больше элементов, чем в \(N\) . Поясним это рассуждение примером.

Пусть в зале находится некоторое число людей и некоторое число стульев. Чтобы узнать, чего больше, достаточно попросить людей занять места. Если кто-нибудь остался без места, значит, людей больше, а если, скажем, все сидят и заняты все места, то людей столько же, сколько стульев. Описанный способ сравнения количества элементов во множествах имеет то преимущество перед непосредственным счетом элементов, что он без особых изменений применяется не только к конечным, но и к бесконечным множествам.

Рассмотрим множество всех натуральных чисел

\(M=\{1,\,2,\,3,\,4,\,\ldots\}\)


и множество всех четных чисел

\(N=\{2,\,4,\,6,\,8,\,\ldots\}\)

Какое множество содержит больше элементов? На первый взгляд кажется, что первое. Однако мы можем образовать из элементов этих множеств пары, как указано ниже.


Таблица 1

\({\color{blue}\begin{array}{c|c|c|c|c|c} {\color{black}M} &{\color{black}1} &{\color{black}2} &{\color{black}3} &{\color{black}4} &{\color{black}\cdots}\\\hline {\color{black}N} &{\color{black}2} &{\color{black}4} &{\color{black}6} &{\color{black}8} &{\color{black}\cdots} \end{array}}\)


Ни один элемент \(M\) и ни один элемент \(N\) не остается без пары. Правда, мы могли бы также образовать пары и так:

Таблица 2

\({\color{blue}\begin{array}{c|c|c|c|c|c|c} {\color{black}M}&{\color{black}1}&{\color{black}2}&{\color{black}3}&{\color{black}4}&{\color{black}5}&{\color{black}\cdots}\\\hline {\color{black}N}&{\color{black}-}&{\color{black}2}&{\color{black}-}&{\color{black}4}&{\color{black}-}&{\color{black}\cdots} \end{array}}\)


Тогда многие элементы из \(M\) остаются без пар. С другой стороны, мы могли бы составить пары и так:

Таблица 3

\({\color{blue}\begin{array}{c|c|c|c|c|c|c|c|c} {\color{black}M}&{\color{black}-}&{\color{black}1}&{\color{black}-}&{\color{black}2}&{\color{black}-}&{\color{black}3}&{\color{black}-}&{\color{black}\cdots}\\\hline {\color{black}N}&{\color{black}2}&{\color{black}4}&{\color{black}6}&{\color{black}8}&{\color{black}10}&{\color{black}12}&{\color{black}14}&{\color{black}\cdots} \end{array}}\)


Теперь многие элементы из \(M\) остаются без пар.

Таким образом, если множества \(A\) и \(B\) бесконечны, то различным способам образования пар соответствуют разные результаты. Если существует такой способ образования пар, при котором у каждого элемента \(A\) и каждого элемента \(B\) имеется парный к нему элемент, то говорят, что между множествами \(A\) и \(B\) можно установить взаимно однозначное соответствие . Например, между рассмотренными выше множествами \(M\) и \(N\) можно установить взаимно однозначное соответствие, как
это видно из табл. 1.

Если между множествами \(A\) и \(B\) можно установить взаимно однозначное соответствие, то говорят, что они имеют одинаковое количество элементов или равномощны . Если же при любом способе образования пар некоторые элементы из \(A\) всегда остаются без пар, то говорят, что множество \(A\) содержит больше элементов, чем \(B\) , или что множество \(A\) имеет большую мощность, чем \(B\) .

Таким образом, мы получили ответ на один из поставленных выше вопросов: как сравнивать между собой количество элементов в бесконечных множествах. Однако это нисколько не приблизило нас к ответу на другой вопрос: существуют ли вообще бесконечные множества. имеющие различные мощности? Чтобы получить ответ на этот вопрос, исследуем некоторые простейшие типы бесконечных множеств.

Счетные множества. Если можно установить взаимно однозначное соответствие между элементами множества \(A\) и элементами множества всех натуральных чисел

\(Z=\{1,\,2,\,3,\,\ldots\},\)


то говорят, что множество \(A\) счетно . Иными словами, множество \(A\) счетно, если все его элементы можно занумеровать посредством натуральных чисел, т. е. записать в виде последовательности

\(a_1,~a_2,~\ldots,~a_n,~\ldots\)

Таблица 1 показывает, что множество всех четных чисел счетно (верхнее число рассматривается теперь как номер соответствующего нижнего числа).

Счетные множества это, так сказать, самые маленькие из бесконечных множеств: во всяком бесконечном множестве содержится счетное подмножество.

Если два непустых конечных множества не пересекаются, то их сумма содержит больше элементов, чем каждое из слагаемых. Для бесконечных множеств это правило может и не выполняться. В самом деле, пусть \(G\) есть множество всех четных чисел, \(H\) - множество всех нечетных чисел и \(Z\) - множество всех натуральных чисел. Как показывает таблица 4, множества \(G\) и \(H\) счетны. Однако множество \(Z=G+H\) вновь счетно.


Таблица 4

\({\color{blue}\begin{array}{c|c|c|c|c|c} {\color{black}G}&{\color{black}2}&{\color{black}4}&{\color{black}6}&{\color{black}8}&{\color{black}\cdots}\\\hline {\color{black}H}&{\color{black}1}&{\color{black}3}&{\color{black}5}&{\color{black}7}&{\color{black}\cdots}\\\hline {\color{black}Z}&{\color{black}1}&{\color{black}2}&{\color{black}3}&{\color{black}4}&{\color{black}\cdots} \end{array}}\)

Нарушение правила "целое больше части" для бесконечных множеств показывает, что свойства бесконечных множеств качественно отличны от свойств конечных множеств. Переход от конечного к бесконечному сопровождается в полном согласии с известным положением диалектики - качественным изменением свойств.

Докажем, что множество всех рациональных чисел счетно . Для этого расположим все рациональные числа в такую таблицу:


Таблица 5

\(\)

Здесь в первой строке помещены все натуральные числа в порядке их возрастания, во второй строке 0 и целые отрицательные числа в порядке их убывания, в третьей строке - положительные несократимые дроби со знаменателем 2 в порядке их возрастания, в четвертой строке - отрицательные несократимые дроби со знаменателем 2 в порядке их убывания и т. д. Ясно, что каждое рациональное число один и только один раз находится в этой таблице. Перенумеруем теперь
все числа этой таблицы в том порядке, как это указано стрелками. Тогда все рациональные числа разместятся в порядке одной последовательности:

Номер места, занимаемого
рациональным числом 1 2 3 4 5 6 7 8 9 . . .
Рациональное число 1. 2, О, 3, - 1, 4 -2 _

Этим установлено взаимно однозначное соответствие между всеми рациональными числами и всеми натуральными числами. Поэтому множество всех рациональных чисел счетно.

Множества мощности континуума

Если можно установить взаимно однозначное соответствие между элементами множества \(M\) и точками отрезка \(0\leqslant x\leqslant1\) , то говорят, что множество \(M\) имеет мощность континуума . В частности, согласно этому определению, само множество точек отрезка \(0\leqslant x\leqslant1\) имеет мощность континуума.

Из рис. 1 видно, что множество точек любого отрезка \(AB\) имеет мощность континуума. Здесь взаимно однозначное соответствие устанавливается геометрически, посредством проектирования.

Нетрудно показать, что множества точек любого интервала \(x\in\) и всей числовой прямой \(x\in[-\infty,+\infty]\) - имеют мощность континуума.

Значительно более интересен такой факт: множество точек квадрата \(0\leqslant x\leqslant1,\) \(0\leqslant y\leqslant1\) имеет мощность континуума. Таким образом, грубо говоря, в квадрате «столько же» точек, сколько и в отрезке.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Теория множеств.

Множества. Пустое множество. Универсальное множество. Подмножества. Собственное подмножество. Способы задания множеств. Мощность множества. Равномощные множества. Конечные и счётные множества. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность). Законы алгебры множеств. Характеристические функции. Декартово произведение множеств. Отношения и свойства отношений. Функции на множествах.

Определение множества.

Множество - это совокупность определённых различаемых объектов, причём таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

Множества обычно обозначаются заглавными латинскими буквами, а элементы множества - строчными. Элементами множеств могут быть любые объекты, например, числа, символы, слова, объекты реального мира. В частности, элементами множества могут быть другие множества.

Например:

A = { a, b, c } - множество A состоящее из 3 элементов

N = { 1, 2, 3, … } - множество N целых чисел

Элементы множества являются уникальными, то есть, один и тот же элемент не может включаться в множество несколько раз (в отличие от векторов и мультимножеств). Считается, что при добавлении в множество элемента, который в нем уже присутствует, множество не меняется.

Порядок записи элементов множества не является существенным (в отличие от записи элементов векторов, где порядок важен).

Таким образом, множества считаются равными, если они состоят из одних и тех же элементов.

Если некоторый объект является элементом множества , то этот факт записывается следующим образом: и читается «x принадлежит А». Аналогично, если элемент не является элементом множества , используется запись («y не принадлежит А»).

Пустое множество – это множество, не содержащее элементов. Пустое множество может быть обозначено с использованием фигурных скобок: = { }. Однако, множество B = { } не является пустым: это множество, содержащее один элемент, который является пустым множеством.

Универсальное множество Е – множество всех объектов, рассматриваемых в данной задаче.

Конечные и бесконечные множества. Если количество элементов множества конечно (то есть существует натуральное число, равное количеству элементов множества), то такое множество называется конечным. В противном случае множество называется бесконечным.

Мощность множества или кардинальное число |A| (иногда card (A)). Мощность множества является обобщением понятия количества элементов на бесконечные множества. Для конечных множеств мощность равна количеству элементов множества.

Мощность пустого множества по определению равна нулю: .

Равномощные множества – это множества, между элементами которых можно установить взаимно однозначное соответствие.

Счётное множество – множество, равномощное множеству натуральных чисел.

Множество А называют подмножеством множества B (обозначается либо ) если все элементы, которые принадлежат множеству A, так же принадлежат и множеству B.

В этом случае B называют надмножеством A

Пустое множество является подмножеством любого множества.

Любое множество является подмножеством самого себя:

Множеством называют совокупность неких объединенных по определенному правилу предметов. При этом они сохраняют свои индивидуальные черты. Множества мы встречаем в повседневной жизни: совокупность монет в кошельке, тарелок в шкафу, яблок в холодильнике и т.д. Также это математическое понятие, являющееся аксиоматическим.

Математическое множество

О том, что такое множество, мы знаем благодаря Георгу Кантору, посвятившему свои математические труды этой теме. Теория множеств стала настоящей революцией в этой области науки и по сей день имеет огромное значение для изучения более сложных понятий. Множество можно определить, только задав все входящие в него предметы, и изобразить следующим образом:

  • M = {a, b, c…}

Принадлежность предмета к множеству обозначается знаком « Є ». Все элементы множества должны отличаться друг от друга. Если в множество не входит ни один элемент, его принято называть пустым.

Элементы одного множества могут быть частью другого. Множества, состоящие из одинаковых элементов, принято считать равными.

Операции, производимые над множествами

Разобрав, что называют множеством, можно переходить к описанию действий над ними.

  • Объединение. Сумма заданных множеств обозначается как Х= N+M+P. Объединение должно вмещать в себя совокупность всех элементов минимум одного из слагаемых.
  • Пересечение. Общая часть нескольких множеств называется пересечением и обозначается как Y. При пустом пересечении множеств считается, что они не пересекаются.
  • Разность. Разностью называется совокупность элементов одного множества, не принадлежащих другому.

Множество чисел

Множество, состоящее из чисел, называется числовым.

В соответствии с видами входящих элементов множества могут обозначаться:

  • Z - состоящие из целых чисел (диапазон бесконечности положительных и отрицательных чисел);
  • Q - состоящие из рациональных чисел (т.е. представленных дробью);
  • N - состоящие из натуральных чисел (натуральные числа - это те, которые мы используем при счете. Они возникают естественным образом);
  • R - состоящие из действительных чисел (положительные, отрицательные числа и ноль называют действительными. Они бывают рациональными и иррациональными. Иррациональные числа можно выразить только в формате десятичной дроби (9,999999999).

Разобрав, что такое множество чисел, вам проще будет дальше постигать математику. Это интересная наука развивает логическое мышление, требует терпения, филигранной точности и времени, но дарит огромную радость от решения сложных задач.