Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Кто занимается автоматизацией производственных процессов. Принцип комплексной интеграции. Конструктивные принципы построения емкостных датчиков механических величин

Решение задач автоматизации

Вопрос 3 Производственный и технологический процессы автоматизированного производства

Следящая система

Следящая система - автоматическая система, в которой выходная величина воспроизводит с определенной точностью входную величину, характер изменения которой заранее не известен.

Следящие системы используют для различных целей. В качестве выходной величины следящей системы можно рассматривать совершенно различные физические величины.Одной из наиболее широко распространенных разновидностей следящих систем являются системы управления положением объектов. Такие системы можно рассматривать как дальнейшее развитие и усовершенствование систем дистанционной передачи угловых или линейных перемещений, в которых регулируемой величиной обычно является угол поворота объекта.

На элемент сравнения (рис. 1, г) от задающего элемента, связанного с входным валом следящей системы, поступает входная величина α ВХ. Сюда же от объекта управления, связанного с выходным валом системы, поступает значение угла обработки а ВЫХ. В результате сравнения этих величин на выходе элемента сравнения появляется рассогласование θ = α ВХ - а ВЫХ.

Сигнал рассогласования с выхода элемента сравнения поступает на преобразователь (Пр), в котором угол θ преобразуется в пропорциональное ему напряжение U 0 - сигнал ошибки.

Однако в подавляющем большинстве случаев мощность сигнала ошибки недостаточна для приведения в действие исполнительного двигателя (М). Поэтому между преобразователем и исполнительным двигателем включают усилитель, обеспечивающий необходимое усиление сигнала ошибки по мощности. Усиленное напряжение с выхода усилителя поступает на М, который приводит в действие объект управления, а перемещение а ВЫХ последнего передается на принимающий элемент измерительной схемы, т. е. на элемент сравнения.

Адаптивная система

Адаптивная (самоприспособляющаяся) система - система автоматического управления, у которой автоматически изменяется способ функционирования управляющей части для осуществления в каком-либо смысле наилучшего управления. В зависимости от поставленной задачи и методов ее решения возможны различные законы управления, поэтому адаптивные системы разделяют на следующие виды:

§ адаптивные системы функционального регулирования, где управляющее воздействие является функцией какого-либо параметра, например, подача - функция одной из составляющих силы резания, скорость резания - функция мощности;

§ адаптивные системы предельного (экстремального) регулирования, которые обеспечивают поддержание предельного значения одного или нескольких параметров в объекте;

§ адаптивные системы оптимального регулирования, в которых учитывается совокупность многих факторов с помощью комплексного критерия оптимальности.

В соответствии с этим критерием осуществляется изменение регулируемых параметров и величин, например, поддержание в станке режима обработки, обеспечивающего максимальную производительность и наименьшую себестоимость обработки, определяется заданием оптимальных значений параметров (скоростей сил резания, температуры и т. д.), от которых зависят производительность и себестоимость процесса обработки.

Технологическая операция

Технологической операцией называют законченную часть технологичес­кого процесса, выполняемую на одном рабочем месте. Следует учитывать, что рабочим местом является элементарная единица структуры предпри­ятия, где размещены исполнители работы, обслуживающие технологическое оборудование, на ограниченное время оснастка и предметы труда. Напри­мер, обработку ступенчатого вала можно выполнять в следующей последо­вательности: на первой операции подрезают торцы и зацентровывают вспо­могательные базы, на второй – обтачивают наружную поверхность, на третьей – шлифуют эти поверхности.

Типовой технологической операцией называют технологическую опе­рацию, характеризуемую единством содержания и последовательности тех­нологических переходов для группы изделий с одними конструктивными и технологическими признаками.

Групповой технологической опе­рацией называют технологическую операцию совместного изготовления группы изделий с разными конструк­тивными, но общими технологически­ми признаками.

Виды технологических операций

Технологический процесс можно по­строить по принципу концентрированных или же дифференцированных тех­нологических операций.

а – последовательная; б – параллель­ная; в – параллельно-последовательная операции

Рисунок 3.2 - Основные виды концентра­ции

Концентрированнойтехнологиче­ской операцией - опе­рация, включающая в себя боль­шое количество технологических пере­ходов. Как правило, она имеет многоинструментальную налад­ку. Пределом концентрации операций является полная обработка детали на одной операции.

Дифференцированнойоперацией называют операцию , состоящую из минимального количества переходов. Пределом дифференциации является выполнение технологической операции, состоящей из одного технологиче­ского перехода.

Достоинства дифференциации операций состоят в следующем: приме­няется сравнительно простое и дешевое оборудование, простота и незначи­тельная сложность их наладки, создается возможность применения более высоких режимов обработки.

Недостатки принципа дифференциации операций: удлиняется технологи­ческая линия, увеличивается количество потребного оборудования и производ­ственной площади, увеличивается число рабочих, большое число установок.

Технологический переход

Технологическим переходом называют законченную часть технологиче­ской операции, выполняемая одними и теми же средствами технологиче­ского оснащения при постоянных технологических режимах и установе. Если при обточке валика сменяли инструмент, то обработка этим инстру­ментом той же поверхности заготовки будет являться новым технологиче­ским переходом. Но сама смена инструмента является вспомога­тельным переходом.

Вспомогательным переходом называют законченную часть технологической операции, состоящей из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода. Переходы могут быть совмещены во времени за счет одновременной обработки не­скольких поверхностей, т. е. могут осу­ществляться последовательно (черно­вая, получистовая, чистовая обточка ступенчатого вала или сверления четы­рех отверстий одним сверлом), парал­лельно (обточка ступенчатого вала не­сколькими резцами или сверление четы­рех отверстий, сразу четырьмя сверлами) или параллельно-последовательно (после обточки ступенчатого вала одновременно несколькими резцами, одновременное снятие фасок несколькими фасочными резцами или сверление четырех отверстий последовательно двумя сверлами).

Установ – часть технологической операции, выполняемая при неизменен­ном закреплении обрабатываемых загото­вок или собираемой сборочной единицы. Поворот деталей на какой-либо угол явля­ется новым установом. Если валик внача­ле обтачивают в трехкулачковом патроне с одного установа, а затем его перевернут и обточат, то это потребует два установа при одной операции (рисунок 3.4).

Рисунок 3.4 - Схема первого (а) и второго (б) установа

Позиция

Установленная и закреп­ленная на поворотном столе заготовка, подвергаемая сверлению, рассверлива­нию и зенкерованию, имеет один установ, но с поворотом стола она будет за­нимать новую позицию.

Позицией называют фиксированное положение, занимаемое жестко закрепленной обрабатываемой заготовкой или собираемой сборочной единицей со­вместно с приспособлением относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. На многошпин­дельных автоматах и полуавтоматах заготовка при одном ее закреплении зани­мает различные позиции относительно станка. Заготовка перемещается в новое положение вместе с зажимным устройством.

При разработке технологического процесса обработки заготовок, пред­почтительно заменять установы позициями, так как каждый дополнитель­ный установ вносит свои погрешности обработки.

В условиях автоматизированного производства под операцией следует понимать законченную часть технологического процесса, выполняемую непрерывно на автоматической линии, которая состоит из нескольких единиц технологического оборудования, связанных автоматически действующими транспортно-загрузочными устройствами. Кроме основных технологических операций в состав ТП включают ряд необходимых для его осуществления вспомогательных операций (транспортных, контрольных, маркировочных и т.п.).

По компоновочной схеме

По виду транспорта различают автоматические линии:

а) со сквозным транспортированием заготовки между станками (применяется при обработке корпусных заготовок);

б) с боковым транспортированием (применяется при обработке коленчатых валов, гильз и т. д.);

в) с верхним транспортированием (применяется при обработке валов, зубчатых колес, фланцев и т. д.);

г) с комбинированным транспортированием;

д) с роторным транспортированием, используемым в роторных АЛ, в которых все технологические операции выполняются при непрерывном транспортировании заготовок и инструмента.

По степени гибкости:

а) синхронные или жесткие;

б) несинхронные или гибкие.

В синхронных автоматических линиях перемещение заготовок осуществляется через синхронизированные промежутки времени. Время обработки на рабочей позиции равно или кратно такту. Такт – интервал времени, через который периодически производится выпуск изделия определенного типа. Такие линии применяются в крупносерийном и массовом производствах.

В несинхронных автоматических линиях обработанные детали перемещаются по мере готовности выполняемой операции. Так как время обработки на каждой позиции разное, то нужны промежуточные накопители. Эти линии применяются в серийном и опытном производствах.

Вопрос 26 Вспомогательные устройства транспортно-накопительных подсистем: поддоны, палеты, толкатели. устройства поворота и ориентации деталей, устройства деления потоков (назначения, конструкции, обсласть применения)

Делители потока.

Применяются для деления потоков в ветвящихся автоматических линиях (рис. 1.). Делятся по принципу движения заслонок: качающихся, возвратно-поступательных и вращающихся.

Деление осуществляется посредством:

Качающихся заслонок поворачивающейся под действием самой заготовки (рис. 1.,а);

С помощью возвратно – поступательных заслонок (рис. 1.,б,в);

Применяются в том случае когда возникает необходимость в разделении общего потока на несколько самостоятельных потоков между однотипными станками. Устанавливаются между механизмом ориентации и накопителем или между накопителем и питателем. Конструкции разнообразны и зависят от формы и размера деталей и от конструкции накопителей и питателей.

Рис. 1. Делители потоков: а.- с чающимися заслонками; б.в – с помощью возвратно-поступающих заслонок.

Ориентирующие устройства.

Во многих случаях в автоматизированном производстве заготовка или деталь должны быть поданы в рабочую зону или на транспортные системы или к захватным или к поворотным устройствам и т.д. в ориентированном положении. Для этого используются различной конструкции ориентирующие устройства в виде шиберов, секторов с возвратно – поступательными или качающимися движениями, вращающихся дисков, лопатных механизмов, трубок втулок и т.п. Схемы ориентирующих устройств приведены на рис. 2.и 3.

Ориентация деталей возможна также и при их транспортировании При этом используется нессиметричность формы деталей и расположение центра тяжести. Способ ориентирования может быть пассивным и активным.

Пассивные ориентирующие устройства получили широкое распространение при вибрационном транспортировании деталей. Общим в принципе их действия является то, что неправильно ориентированные детали сбрасываются с транспортного устройства и возвращаются к началу потока, а далее следуют лишь правильно ориентированные.

Активные ориентирующие устройства придают детали сложное положение в пространстве в независимости от их исходного положения при поступлении в ориентирующее устройство. Принцип принудительного изменения используют так же при необходимости переориентации. Для несложных деталей малых размеров – применяют простые ориентирующие устройства, для дет. сложных форм или тяжёлых – ориентирующие устройства типа кантователей или универсальных поворотных устройств. Иногда используются действие магнитного поля.

Ориентируемые заготовки условно делят на:

Заготовки простой формы, ориентируемые с помощью вырезов в лотках, скосов, отсекателей;

Заготовки со смещённым центром тяжести, которые ориентируются разом или при повороте во время прохождения их через щель или вырез в лотке;

Симметричные и ассиметричные заготовки, которые ориентируются при провале в спец. окно лотка (ориентация по трафарету).

Заготовки ориентируемые с помощью спец. устройств.

Плоские заготовки типа кругов, колец (рис 2.,а) с d >h , ориентируются с помощью спирального лотка рабочая поверхность которого наклонена по радиусу к центру бункера под b =3-5 0 для обеспечения сброса второго слоя заготовок. Буртик лотка m <h .

Колпачки с d ³ h ориентируются пассивным способом с помощью выреза с язычком (рис 2.,б).

Заготовки ориентированные донышком вниз проходят по язычку не опрокидываясь, т.к. язычок является достаточной опорой для обеспечения устойчивого положения заготовки. Заготовки расположенные отверстием вниз, надавливаются на язычок теряют равновесие и падают в бункер.

Цилиндры с l > d ориентируются пассивным способом (рис. 2., в) для сброса неправильно ориентированных заготовок под лотком установлен скос, расположенным на высоте 1,1 d от поверхности лотка.

Для ориентировании ступенчатых дисков применяют пассивный способ (рис 2.,г) с использованием особенностей формы. Заготовки, расположенные большим диаметром вниз свободно проходят мимо сбрасывателя и перемещаются далее по лотку.

Рис. 2. Схемы ориентирующих устройств.

Заготовки с большим диаметром вверх – сталкиваются сбрасывателем с лотка в бункер.

Заготовки типа стержней с головками (рис 2.,д) ориентируются активным способом при помощи прорези, выполненным на прямолинейном участке лотка.

Для активной ориентации валиков с уступом (рис.3.,а) используют смещение центра тяжести.

Для ориентации тонких заготовок в виде скоб, треугольников, секторов применяют пассивный способ (рис. 3.,б). Для пластин Т образной формы – активный способ (рис.3.,в).

При необходимости переориентации заготовок в ходе техпроцесса применяют способ активной ориентации.

Рис. 3. Схемы ориентирующих устройств.

Поворотные устройства.

Используют в станках для перемещения обрабатываемой детали или инструмента на позицию. Это многопозиционные столы и барабаны, блоки многошпиндельных автома­тов, револьверные головки, дисковые магазины и делительные устройства (рис. 4.).

К поворотным устройствам предъявляются требования точности поворота на заданную угловую величину, точности и жесткости фикса­ции в рабочей позиций, осуществление поворота за минимальное время, при ограничениях на возникающие при этом динамические нагрузки.

Точность поворотных устройств, следует оценивать с вероятностных позиций. Под точностью здесь принять понимать точность углового позиционирования; характеризующуюся текущей погрешностью угла поворота. В лучших системах управления автоматиче­ских поворотных устройств, для минимизации погрешностей команды подают с соответст­вующим упреждением. Точность современных поворотных станков с ЧПУ составляет 3..6 угловых секунд.

Быстродействие характеризуется средней скоростью поворота w ср – до 1,0 с -1 . Универсальность оп­ределяется возможным диапазоном числа делений, который в современных автоматиче­ских поворотных столах равен 2...20000 и выше.

В качестве привода поворотных устройств используют шаговые двигатели (рис.4,а), позво­ляющие получать широкую универсальность по диапазону делений, состыковываться с системами управления с ЧПУ или ЭВМ. Поворотные устройства с гидроприводом (рис.4,б) и с маль­тийским механизмом (рис.4,в) широко применяются в станках и револьверных головках с постоян­ным фиксированным углом поворота.

Рис. 4 Схемы поворотных устройств.

Применяют такие схемы с периодическим включе­нием кинематической цепи различными муфтами (рис.4,в,г), и храповые механизмы (рис.4,е)

Транспортным пакетом называется укрупненная грузовая единица, сформированная из штучных грузов в таре и без нее, с применением различных способов и средств пакетирования, сохраняющая форму в процессе обращения и обеспечивающая возможность комплексной механизации погрузочно-разгрузочных и складских операций.

Одним из основных средств пакетирования являются поддоны (плоские, стоечные и ящичные).

Поддоны для гибких автоматизированных производств выбирают в соответствии с теми же методическими принципами, которые изложены выше применительно к созданию механизированных и автоматизированных складов любых типов.

Все поддоны можно классифицировать :

По назначению- транспортные и технологические (кассеты, спутники);

По роду транспортируемых грузов- универсальные (для грузов широкой номенклатуры) и специальные (для определенных грузов);

По конструкции (плоские, стоечные, ящичные, одно- и двухна-стильные, одно- и двухзаходные);

По материалу (металлические - из стали или легких сплавов, деревянные, пластмассовые, картонные, композитные с применением древесно-стружечных плит и других материалов);

По продолжительности использования (разового использования, многооборотные);

По области применения (внутрискладские поддоны, для внутризаводских перевозок, для внешних магистральных перевозок);

По размерам (150 х 200; 200 х 300; 300 х 400; 400 х 600; 600 х 800; 800 х 800; 800 х 1000; 800 х 1200; 1600 х 1000; 1600 х 1200).

Многооборотные поддоны являются частью транспортно-складского оборудования ГАП, участка, цеха, предприятия. Поддоны разового использования можно рассматривать как разновидность транспортной упаковки грузов.

Особенностью специальных технологических поддонов для ГАП является то, что на них определенные грузы (заготовки, полуфабрикаты, детали) располагают в фиксированном положении, а иногда и закрепляют заранее, как, например, на поддонах-спутниках многооперационных сверлильно-фрезерно-расточных станков, и подают на них детали на станок непосредственно в зону обработки.

Поддоны-кассеты и поддоны-спутники изготовляют штампованными, сварными, литыми, и они могут служить самостоятельным устройством для формирования грузовой транспортно-складской единицы, или их укладывают на стандартные поддоны.

Транспортно-складские поддоны универсальны по роду размещаемых в них грузов и могут быть металлическими или пластмассовыми, а по конструкции плоскими, стоечными и ящичными.

Перемещения деталей типа тел вращения в ГПС осуществляются чаще всего с использованием простейших транспортных палет без закрепления на них изделий. Такие палеты одновременно выполняют
функции транспортирования и складирования.

Существуют три их разновидности:

1) одиночные палеты, которые перемещаются поодиночке и не могут быть уложены в несколько ярусов;

2) выдвижные палеты, установленные в специальных контейнерах, с возможностью выдвижения-задвижки;

3) многоярусные палеты, которые можно располагать поблизости от РМ одна на другой, в штабелях.

Перспективным является создание универсальных многопредметных палет на основе универсальных модулей. Такие палеты состоят из рамы обеспечивающей возможность обработки различных по форме изделий на различных РМ, вставок, которые используются для установки специальных элементов, служащих для размещения заготовок (деталей); форма и размеры этих элементов определяются формой и размерами заготовок (деталей).

Несущая рама (сварная стальная конструкция) имеет размеры европалет (1200 х 800 мм), хотя могут быть использованы и меньшие габариты. Имея гладкую опорную поверхность, рама может быть установлена на полу либо перемещаться на роликах или с помощью цепных транспортеров. Расположенные поперек или вдоль рамы защитные трубки предохраняют изделия от повреждений в ходе транспортирования. В углах рамы приварены подпорки для укладывания изделий в несколько ярусов. Расстояния между ярусами могут быть изменены с помощью вставляемых мерных стержней.

Для выбора палет можно использовать следующие критерии: соответствие габаритам европалет; масса изделий и палет; количество изделий, размещенных на палете (зависит от размеров и формы изделий); минимальное штучное время обработки одного изделия; требуемое время безлюдной работы ГПС.

Для изделий, имеющих сравнительно малые размеры и длительное время обработки, когда запаса изделий на одной-двух палетах достаточно для обеспечения устойчивой работы ГПС, использовать одиночные палеты;
- для крупногабаритных изделий с малым временем обработки применять выдвижные и многоярусные палеты с дополнительными устройствами для манипулирования ими.

К таким палетам относятся палеты со смонтированными на них крепежными приспособлениями или специальные транспортные палеты. Время, необходимое для замены палет, можно значительно сократить, вынеся действия закрепления-открепления заготовок из рабочей зоны на дополнительный носитель сменных палет, который обеспечивает быстрый их возврат обратно в рабочую зону.

Наиболее распространены станочные (входящие в комплектацию ГПМ), транспортные и вспомогательные палеты.

Чаще всего в ГПС используются палеты, служащие одновременно как для базирования и закрепления деталей, так и для транспортирования и манипулирования ими. Это обеспечивает гибкость транспортной подсистемы, поскольку, с одной стороны, все палеты имеют унифицированную рабочую поверхность, а с другой - столы системы транспортирования и манипулирования приспособлены для использования палет конкретного типа.

В случае использования станочных палет, входящих в ГПМ, заготовка крепится на них вне пределов рабочей зоны, параллельно с обработкой иной детали. После этого она перемещается в рабочую зону, где автоматически фиксируется для обработки.

Вопросы к экзамену по

Вопрос 1 Цель и задачи автоматизации производственных процессов. Виды автоматизации производственных процессов

Основными целями автоматизации технологического процесса являются :
-- повышение эффективности производственного процесса;
-- повышение безопасности производственного процесса.

Цели достигаются посредством решения следующих задач автоматизации технологического процесса:
-- улучшение качества регулирования;
-- повышение коэффициента готовности оборудования;
-- улучшение эргономики труда операторов процесса;
-- хранение информации о ходе технологического процесса и аварийных ситуациях.

Под термином «автоматизация» понимается совокупность методических, технических и программных средств, обеспечивающих проведение процесса измерения без непосредственного участия человека. Цели автоматизации представлены в табл. 1.

Таблица 1

Цели автоматизации
Научные Технические Экономические Социальные
1. Повышение эффек­тивности и качества научных результатов за счет более полного исследования моделей 2. Повышение точности и достоверности результатов исследова­ний за счет оптимиза­ции эксперимента. 3. Получение качествен­но новых научных ре­зультатов, невозмож­ных без ЭВМ. 1. Повышение каче­ства продукции за счет повторяемости операций, увеличения числа измере­ний и получения более полных дан­ных о свойствах изделий. 2. Повышение на­дела точности изделий за счет получения более полных данных о процессах старения и их пред­шественниках. 1. Экономия трудо­вых ресурсов за счет замены труда чело­века трудом маши­ны. 2. Сокращение за­трат в промыш­ленности за счет уменьшения тру­доемкости работ. 3. Повышение про­изводительности труда на основе оптимального рас­пределения работ между человеком и машиной и ликвида­ции неполной загрузки при эпизо­дическом обслужи­вании объекта. 1. Повышение интеллектуального потенциала за счет поручения рутин­ных операций ма­шине. 2. Ликвидация слу­чаев занятости пер­сонала операций в нежелательных условиях. 3. Освобождение человека от тяже­лого физического труда и исполь­зование сэконом­ленного времени для удовлетворения духовных потреб­ностей.

Задачами автоматизации являются:

Устранение или минимизация «человеческого фактора» при выполнении функций системой или прибором;

Достижение заданных показателей качества при реализации автоматизируемых функций.

Решение задач автоматизации технологического процесса осуществляется при помощи внедрения современных методов и средств автоматизации. В результате автоматизации технологического процесса создается АСУ ТП.

Автоматизация процессов производства заключается в том, что часть функций управления, регулирования и контроля технологическими комплексами осуществляется не людьми, а роботизированными механизмами и информационными системами. Фактически ее можно назвать основной производственной идеей 21 века.


Принципы

На всех уровнях предприятия принципы автоматизации производственных процессов одинаковы и едины, хотя и отличаются масштабом подхода к решению технологичных и управленческих задач. Эти принципы обеспечивают эффективное выполнение требуемых работ в автоматическом режиме.

Принцип согласованности и гибкости

Все действия в рамках единой компьютеризированной системы должны быть согласованы друг с другом и с похожими позициями в смежных областях. Полная автоматизация оперативных, производственных и технологических процессов достигается за счет общности выполняемых операций, рецептур, графика и оптимального сочетания методик. При невыполнении этого принципа нарушится гибкость производства и комплексное выполнение всего процесса.

Особенности гибких автоматизированных технологий

Использование гибких производственных систем – ключевая тенденция в современной автоматизации. В рамках их действия выполняется технологическая оптимизация за счет слаженности работы всех системных элементов и возможности быстрой замены инструментария. Используемые методики позволяют эффективно перестроить имеющиеся комплексы под новые принципы без серьезных затрат.

Создание и структура

В зависимости от уровня развития производства гибкость автоматизации достигается за счет слаженного и комплексного взаимодействия всех элементов системы: манипуляторов, микропроцессоров, роботов и т. д. Причем помимо механизированного изготовления продукции, в этих процессах задействованы транспортные, складские и прочие подразделения предприятия.

Принцип завершенности

Идеальная автоматизированная производственная система должна представлять собой завершенный циклический процесс без промежуточной передачи продукции в другие подразделения. Качественное выполнение этого принципа обеспечивается:

  • многофункциональностью оборудования, позволяющего за одну единицу времени обрабатывать сразу несколько видов сырья;
  • технологичностью изготавливаемого товара за счет сокращения требуемых ресурсов;
  • унификацией производственных методов;
  • минимумом дополнительных наладочных работ после запуска оборудования в эксплуатацию.

Принцип комплексной интеграции

Степень автоматизации зависит от взаимодействия процессов производства друг с другом и с внешним миром, а также от скорости интеграции отдельной технологии в общую организационную среду.

Принцип независимого выполнения

Современные автоматизированные системы функционируют по принципу: «Не мешай машине работать». Фактически все процессы в течение производственного цикла должны выполняться без участия человека, допускается лишь минимальный контроль с его стороны.

Объекты

Автоматизировать производство можно в любой сфере деятельности, но наиболее эффективно компьютеризация работает в отношении сложных монотонных процессов. Такие операции встречаются в:

  • легкой и тяжелой промышленности;
  • топливно-энергетическом комплексе;
  • сельском хозяйстве;
  • торговле;
  • медицине и т. д.

Машинизация помогает в технической диагностике, ведении научной и исследовательской деятельности в рамках отдельного предприятия.

Цели

Внедрение на производстве автоматизированных средств, которые способны усовершенствовать технологические процессы, является ключевым залогом прогрессивной и эффективной работы. К ключевым целям автоматизации производственных процессов относят:

  • сокращение численности персонала;
  • увеличение производительности труда за счет максимальной автоматики;
  • расширение линейки продукции;
  • рост объемов производства;
  • улучшение качества товаров;
  • уменьшение расходной составляющей;
  • создание экологически чистого производства за счет снижения вредных выбросов в атмосферу;
  • внедрение высоких технологий в обычный производственный цикл с минимальными затратами;
  • повышение безопасности технологичных процессов.

При достижении этих целей предприятие получает массу преимуществ от внедрения механизированных систем и окупает затраты на автоматизацию (при условии стабильного спроса на продукцию).

Качественное выполнение поставленных задач механизации определяется внедрением:

  • современных автоматизированных средств;
  • индивидуально разработанных методов компьютеризации.

Степень автоматизации зависит от интеграции инновационного оборудования в существующую технологическую цепочку. Уровень внедрения оценивается индивидуально в зависимости от особенностей конкретного производства.

Компоненты

В составе единой автоматизированной производственной среды на предприятии рассматриваются следующие элементы:

  • системы проектирования, используемые для разработки новой продукции и технической документации;
  • станки с программным управлением на базе микропроцессоров;
  • промышленные роботизированные комплексы и технологичные роботы;
  • компьютеризированная система контроля качества на предприятии;
  • технологичные склады со специальным подъемно-транспортным оборудованием;
  • общая автоматизированная система управления производства (АСУП).

Стратегия

Соблюдение стратегии автоматизации помогает улучшить весь комплекс необходимых процессов и получить предельные преимущества от внедрения компьютерных систем на предприятии. Автоматизировать можно только те процессы, которые полностью изучены и проанализированы, поскольку программа, разработанная для системы, должна иметь в своем составе разные вариации одного действия в зависимости от факторов внешней среды, количества ресурсов и качества исполнения всех этапов производства.

После определения понятия, изучения и анализа технологичных процессов наступает черед оптимизации. Необходимо качественно упростить структуру, удалив из системы процессы, не приносящие какой-либо ценности. При возможности нужно сократить количество выполняемых действий, соединив некоторые операции в одну. Чем проще структурный порядок, тем легче его компьютеризировать. После упрощения систем можно приступать к автоматизации производственных процессов.


Проектирование

Проектирование – это ключевой этап автоматизации производственных процессов, без которого на производстве невозможно внедрение комплексной механизации и компьютеризации. В его рамках создается специальная схема, отображающая структуру, параметры и ключевые характеристики используемых устройств. Схема стандартно состоит из следующих пунктов:

  1. масштаб автоматизации (описывается отдельно для всего предприятия и для отдельных производственных подразделений);
  2. определение контрольных параметров работы устройств, которые в дальнейшем будут выступать маркерами проверки;
  3. описание систем управления;
  4. конфигурация расположения автоматизированных средств;
  5. сведения о блокировке оборудования (в каких случаях она применима, как и кем будет запускаться в случае экстренной ситуации).

Классификация

Существует несколько классификаций процессов компьютеризации предприятия, но эффективнее всего разделять эти системы в зависимости от их степени внедрения в общий производственный цикл. На этом основании автоматизация бывает:

  • частичной;
  • комплексной;
  • полной.

Эти разновидности – всего лишь уровни автоматизации производства, которые зависят от размера предприятия и объема технологичных работ.

Частичная автоматизация – это комплекс операций по усовершенствованию производства, в рамках которого происходит машинизация одного действия. Она не требует формирования сложного управленческого комплекса и полной интеграции смежных систем. На этом уровне компьютеризации допускается участие человека (не всегда в ограниченном объеме).

Комплексная автоматизация позволяет оптимизировать работу крупного производственного подразделения в режиме единого комплекса. Ее применение оправдана только в рамках крупного инновационного предприятия, где используется максимально надежное оборудование, поскольку поломка даже одного станка рискует остановить всю рабочую линию.

Полная автоматизация – это комплекс процессов, которые обеспечивают независимую работу всей системы, в т.ч. управление производством. Ее внедрение наиболее затратно, поэтому эта система используется на крупных предприятиях в условиях рентабельного и стабильного производства. На этом этапе участие человека сведено к минимуму. Чаще всего оно заключается в контроле системы (например, проверка показаний датчиков, устранение мелких неполадок и т. д.).

Преимущества

Автоматизированные процессы увеличивают скорость выполняемых цикличных операций, обеспечивают их точность и сохранность работоспособности вне зависимости от факторов внешней среды. За счет исключения человеческого фактора сокращается количество возможных ошибок и повышается качество работы. В случае возникновения типичных ситуаций программа запоминает алгоритм действий и применяет его с максимальной оперативностью.

Автоматизация позволяет увеличить точность управления бизнес-процессами на производстве за счет охвата большого объема информации, что просто невозможно при отсутствии механизации. Компьютеризированное оборудование может выполнять сразу несколько технологичных операций одновременно без ущерба для качества процесса и точности вычислений.

Понятие автоматизации процессов неразрывно связано с глобальным технологическим процессом. Без внедрения систем компьютеризации невозможно современное развитие отдельных подразделений и всего предприятия в целом. Машинизация производства позволяет максимально эффективно повысить качество конченой продукции, расширить линейку предлагаемых видов товаров и увеличить объем выпуска.

Конференция по автоматизации производства 28 ноября 2017 в Москве

Внедрение на предприятия технических средств, позволяющих автоматизировать производственные процессы, является базовым условием эффективной работы. Разнообразие современных методов автоматизации расширяет спектр их применения, при этом затраты на механизацию, как правило, оправдываются конечным результатом в виде увеличения объемов изготавливаемой продукции, а также повышения ее качества.

Организации, которые идут по пути технологического прогресса, занимают лидирующие места на рынке, обеспечивают более качественные трудовые условия и минимизируют потребность в сырье. По этой причине крупные предприятия уже невозможно представить без осуществления проектов по механизации - исключения касаются лишь мелких ремесленнических производств, где автоматизация производства себя не оправдывает ввиду принципиального выбора в пользу ручного изготовления. Но и в таких случаях возможно частичное включение автоматики на некоторых этапах производства.

Основные сведения об автоматизации

В широком смысле автоматизация предполагает создание таких условий на производстве, которые позволят без участия человека выполнять определенные задачи по изготовлению и выпуску продукции. При этом роль оператора может заключаться в решении наиболее ответственных задач. В зависимости от поставленных целей, автоматизация технологических процессов и производств может быть полной, частичной или комплексной. Выбор конкретной модели определяется сложностью технической модернизации предприятия за счет автоматической начинки.

На заводах и фабриках, где реализована полная автоматизация, обычно механизированным и электронным системам управления передается весь функционал по контролю над производством. Такой подход наиболее рационален, если рабочие режимы не предполагают изменений. В частичном виде автоматизация внедряется на отдельных этапах производства или при механизации автономного технического компонента, не требуя создания сложной инфраструктуры управления всем процессом. Комплексный уровень автоматизации производства обычно реализуется на определенных участках - это может быть отдел, цех, линия и т. д. Оператор в данном случае контролирует саму систему, не затрагивая непосредственный рабочий процесс.

Системы автоматизированного управления

Для начала важно отметить, что такие системы предполагают полный контроль над предприятием, фабрикой или заводом. Их функции могут распространяться на конкретную единицу оборудования, конвейер, цех или производственный участок. В данном случае системы автоматизации технологических процессов принимают и обрабатывают информацию от обслуживаемого объекта и на основе этих данных оказывают корректирующее воздействие. Например, если работа выпускающего комплекса не отвечает параметрам технологических нормативов, система по специальным каналам изменит его рабочие режимы согласно требованиям.

Объекты автоматизации и их параметры

Главной задачей при внедрении средств механизации производства является поддержание качественных параметров работы объекта, что в результате отразится и на характеристиках продукции. На сегодняшний день специалисты стараются не углубляться в сущность технических параметров разных объектов, поскольку теоретически внедрение систем управления возможно на любой составной части производства. Если рассматривать в этом плане основы автоматизации технологических процессов, то в перечень объектов механизации войдут те же цеха, конвейеры, всевозможные аппараты и установки. Можно лишь сравнивать степени сложности внедрения автоматики, которая зависит от уровня и масштаба проекта.

Относительно параметров, с которыми ведут работу автоматические системы, можно выделить входные и выходные показатели. В первом случае это физические характеристики продукции, а также свойства самого объекта. Во втором - это непосредственно качественные показатели готового продукта.

Регулирующие технические средства

Приборы, обеспечивающие регулирование, применяются в системах автоматизации в виде специальных сигнализаторов. В зависимости от назначения они могут отслеживать и управлять различными технологическими параметрами. В частности, автоматизация технологических процессов и производств может включать сигнализаторы температурных показателей, давления, характеристик потока и т. д. Технически приборы могут быть реализованы как бесшкальные устройства с электрическими контактными элементами на выходе.

Принцип работы регулирующих сигнализаторов также различен. Если рассматривать наиболее распространенные температурные устройства, то можно выделить манометрические, ртутные, биметаллические и терморезисторные модели. Конструкционное исполнение, как правило, обуславливается принципом действия, но немалое влияние на него оказывают и условия работы. В зависимости от направления работы предприятия, автоматизация технологических процессов и производств может проектироваться с расчетом на специфические условия эксплуатации. По этой причине и регулирующие приборы разрабатываются с ориентировкой на использование в условиях повышенной влажности, физического давления или на действие химических веществ.

Программируемые системы автоматизации

Качество управления и контроля производственных процессов заметно повысилось на фоне активного снабжения предприятий вычислительными устройствами и микропроцессорами. С точки зрения промышленных нужд возможности программируемых технических средств позволяют не только обеспечивать эффективное управление технологическими процессами, но и автоматизировать проектирование, а также проводить производственные испытания и эксперименты.

Устройства ЭВМ, которые применяются на современных предприятиях, в режиме реального времени решают задачи регулирования и управления технологическими процессами. Такие средства автоматизации производства называются вычислительными комплексами и работают на принципе агрегатирования. Системы включают в состав унифицированные функциональные блоки и модули, из которых можно составлять различные конфигурации и приспосабливать комплекс к работе в определенных условиях.

Агрегаты и механизмы в системах автоматизации

Непосредственное исполнение рабочих операций берут на себя электрические, гидравлические и пневматические устройства. По принципу работы классификация предполагает функциональные и порционные механизмы. В пищевой промышленности обычно реализуются подобные технологии. Автоматизация производства в этом случае предполагает внедрение электрических и пневматических механизмов, конструкции которых могут включать электроприводы и регулирующие органы.

Электродвигатели в системах автоматизации

Основу исполнительных механизмов нередко формируют электромоторы. По типу управления они могут быть представлены в бесконтактном и контактном исполнениях. Агрегаты, которые управляются от релейно-контактных приборов, при манипуляциях оператором могут изменять направление движения рабочих органов, но скорость выполнения операций остается неизменной. Если предполагается автоматизация и механизация технологических процессов с применением бесконтактных устройств, то используют полупроводниковые усилители - электрические или магнитные.

Щиты и пульты управления

Для установки оборудования, которое должно обеспечивать управление и контроль производственного процесса на предприятиях, монтируются специальные пульты и щиты. На них размещают приборы для автоматического управления и регулирования, контрольно-измерительную аппаратуру, защитные механизмы, а также различные элементы коммуникационной инфраструктуры. По конструкции такой щит может представлять собой металлический шкаф или плоскую панель, на которой и устанавливаются средства автоматизации.

Пульт, в свою очередь, является центром для дистанционного управления - это своего рода диспетчерская или операторская зона. Важно отметить, что автоматизация технологических процессов и производств должна предусматривать и доступ к обслуживанию со стороны персонала. Именно эта функция во многом и определяется пультами и щитами, позволяющими вести расчеты, оценивать производственные показатели и в целом отслеживать рабочий процесс.

Проектирование систем автоматизации

Основным документом, который выступает руководством для технологической модернизации производства с целью автоматизации, является схема. На ней отображается структура, параметры и характеристики устройств, которые в дальнейшем выступят средствами автоматической механизации. В стандартном исполнении схема отображает следующие данные:

  • уровень (масштаб) автоматизации на конкретном предприятии;
  • определение параметров работы объекта, которые должны быть обеспечены средствами контроля и регулирования;
  • характеристики управления - полное, дистанционное, операторское;
  • возможности блокировки исполнительных механизмов и агрегатов;
  • конфигурацию расположения технических средств, в том числе на пультах и щитах.

Вспомогательные средства автоматизации

Несмотря на второстепенную роль, дополнительные устройства обеспечивают важные контрольные и управляющие функции. Благодаря им обеспечивается та самая связь между исполнительными устройствами и человеком. В плане оснащения вспомогательными приборами автоматизация производства может предусматривать кнопочные станции, реле управления, различные переключатели и командные пульты. Существует множество конструкций и разновидностей данных устройств, но все они ориентированы на эргономичное и безопасное управление ключевыми агрегатами на объекте.

Cтраница 1


Автоматизированные производственные процессы - это такие процессы, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовой продукции.  

Комплексно автоматизированный производственный процесс описывается следующими уравнениями.  

Под автоматизированными производственными процессами понимаются такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспо - могательные - полностью или частично.  

Под автоматизированными производственными процессами понимают такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовых изделий.  

Под автоматизированными производственными процессами понимаются такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовой продукции.  

Такой подход к автоматизированным производственным процессам имеет много преимуществ. Тот факт, что они обходятся дешево и окупаются быстро, позволяет с большой легкостью протолкнуть их у высшего начальства. Одним из наиболее разительных управленческих аргументов против внедрения крупных автоматических установок является то, что спрос на товар может измениться прежде, чем проектируемая для него автоматическая установка будет пущена в ход.  

Важнейшим, этапом создания автоматизированного производственного процесса является выбор наиболее целесообразного варианта технологического процесса.  

Оптимальные технологические варианты изготовления готовой продукции должны служить основой автоматизированного производственного процесса. Наименование Технология машиностроения в данное время неправильно приписывается существующим курсам и учебным специальностям, представляющим собою, по существу, обработку резанием.  

На современных промышленных предприятиях, в металлургических, химических, нефтеобрабатывающих и других отраслях с автоматизированными производственными процессами измерительная техника используется главным образом для контроля производственных процессов (их параметров), сочетаемого с автоматическим регулированием и управлением, и контроля качества выпускаемой продукции. Хотя контроль производственного процесса, осуществляемый через те или иные его параметры, преследует иную цель чем измерение отдельных величин, а именно-проверку степени (в установленных пределах) выполнения заданных режимов (параметров), тем не менее процесс контроля имеет много общего с измерением как в методике, так и в аппаратуре. Примером могут служить измерительные преобразователи, которые преобразуют всевозможные неэлектрические величины в электрические и широко применяются как при измерениях, так и при контроле. Кроме того, в устройствах, применяемых для контроля, в ряде случаев осуществляют именно измерения, если, например, требуется знать числовые значения контролируемого параметра и его изменения во времени.  


Во многих случаях при проведении различного рода научных экспериментальных исследований, испытании новых образцов техники, а также при контроле автоматизированных производственных процессов применяется документальная регистрация значений во времени контролируемых неэлектрических величин. В этих случаях вместо индикаторного прибора используется устройство регистрирующее (записывающее) поступающие на его вход электрические сигналы. Наиболее широко используются магнитная и осциллографическая записи электрических сигналов.  

Так как в автоматизации заложены возможности повышения технико-экономических показателей, то при разработке алгоритма управления нужно стремиться к тому, чтобы автоматизированный производственный процесс, протекал оптимально. Это значит, что при прочих равных условиях производительность оборудования должна быть максимальной, качество получаемых продуктов высоким, энергетические затраты минимальными и, как следствие этого, себестоимость готовой продукции невысокой.  

Каждый агрегат должен по возможности иметь наименьшие габариты, массу и стоимость; конструкция преобразователя должна быть технологична, допускать применение автоматизированных производственных процессов при его изготовлении и обеспечивать благоприятные условия для эксплуатации.  

Прежде, когда производственные процессы не были автоматизированы, и технология в значительной мере базировалась на опыте и навыках людей, когда средства измерительной техники не были столь развиты, как сейчас, попытки четкого осмысливания к изысканиям наиболее обоснованных оптимальных решений и тем более попытки построения оптимальных систем были беспредметными. Сейчас вопросы построения научно обоснованных и автоматизированных производственных процессов приобретают актуальный характер. Следовательно, повышается роль проблемы оптимума, проблемы выбора единственного наиболее рационального решения.  

Типы систем автоматизации включают в себя:

  • неизменяемые системы. Это системы, в которых последовательность действий определяется конфигурацией оборудования или условиями процесса и не может быть изменена в ходе процесса.
  • программируемые системы. Это системы, в которых последовательность действий может изменяться в зависимости от заданной программы и конфигурации процесса. Выбор необходимой последовательности действий осуществляется за счет набора инструкций, которые могут быть прочитаны и интерпретированы системой.
  • гибкие (самонастраиваемые) системы. Это системы, которые способны осуществлять выбор необходимых действий в процессе работы. Изменение конфигурации процесса (последовательности и условий выполнения операций) осуществляется на основании информации о ходе процесса.

Эти типы систем могут применяться на всех уровнях автоматизации процессов по отдельности или в составе комбинированной системы.

В каждой отрасли экономики существуют предприятия и организации, которые производят продукцию или предоставляют услуги. Все эти предприятия можно разделить на три группы, в зависимости от их «удаленности» в цепочке переработки природных ресурсов.

Первая группа предприятий, это предприятия, добывающие или производящие природные ресурсы. К таким предприятиям относятся, например, сельскохозяйственные производители, нефтегазодобывающие предприятия.

Вторая группа предприятий, это предприятия, выполняющие переработку природного сырья. Они изготавливают продукцию из сырья, добытого или произведенного предприятиями первой группы. К таким предприятиям относятся, например, предприятия автомобильной промышленности, сталелитейные предприятия, предприятия электронной промышленности, электростанции и т.п.

Третья группа, это предприятия сферы услуг. К таким организациям относятся, например, банки, образовательные учреждения, медицинские учреждения, рестораны и пр.

Для всех предприятий можно выделить общие группы процессов, связанные с производством продукции или предоставлением услуг.

К таким процессам относятся:

  • бизнес процессы;
  • процессы проектирования и разработки;
  • процессы производства;
  • процессы контроля и анализа.
  • Бизнес процессы – это процессы, обеспечивающие взаимодействие внутри организации и с внешними заинтересованными сторонами (потребителями, поставщиками, надзорными органами и пр.). К этой категории процессов можно отнести процессы маркетинга и продаж, взаимодействия с потребителями , процессы финансового, кадрового, материального планирования и учета и пр.
  • Процессы проектирования и разработки – это все процессы, связанные с разработкой продукции или услуги. К таким процессам относятся процессы планирования разработки, сбора и подготовки исходных данных, выполнение проекта, контроль и анализ результатов проектирования и пр.
  • Процессы производства – это процессы, необходимые для производства продукции или предоставления услуг. К этой группе относятся все производственные и технологические процессы. Они также включают в себя процессы планирования потребности и планирования мощностей, логистические процессы и процессы обслуживания.
  • Процессы контроля и анализа – эта группа процессов связана со сбором и обработкой информации о выполнении процессов. К таким процессам относятся процессы контроля качества, операционного управления, процессы контроля запасов и пр.

Большинство процессов, относящихся к этим группам, может быть автоматизирована. На сегодняшний день, существуют классы систем, которые обеспечивают автоматизацию этих процессов.

Техническое задание на подсистему "Склады" Техническое задание на подсистему "Документооборот" Техническое задание на подсистему "Закупки"

Стратегия автоматизации процессов

Автоматизация процессов представляет собой сложную и трудоемкую задачу. Для успешного решения этой задачи необходимо придерживаться определенной стратегии автоматизации. Она позволяет улучшить процессы и получить от автоматизации ряд существенных преимуществ.

Кратко, стратегию можно сформулировать следующим образом:

  • понимание процесса. Для того чтобы автоматизировать процесс необходимо понимать существующий процесс со всеми его деталями. Процесс должен быть полностью проанализирован. Должны быть определены входы и выходы процесса, последовательность действий, взаимосвязь с другими процессами, состав ресурсов процесса и пр.
  • упрощение процесса. После проведения анализа процесса необходимо упростить процесс. Лишние операции, не приносящие ценности, должны быть сокращены. Отдельные операции могут объединяться или выполняться параллельно. Для улучшения процесса могут быть предложены другие технологии его исполнения.
  • автоматизация процесса. Автоматизация процессов может выполняться только после того, как процесс максимально упростился. Чем проще порядок действий процесса, тем проще его автоматизировать и тем эффективнее будет работать автоматизированный процесс.