Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Как работает электричество для детей. Что такое электричество

Физика электричества - это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют электрическую энергию. О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба - все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно число электронов в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.

О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине электрический заряд (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона - отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности - протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.

Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как физика (раздел "Электричество"), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти - как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура - мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (- 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней - такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В генераторе Ван де Граафа положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.

Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется - движение тока прекратится, и лампа погаснет.

Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая электродвижущую силу (ЭДС), заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.

Аналогично электрическая цепь может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор - потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) - обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества - очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

Электричество для "чайников". Школа для электрика

Предлагаем небольшой материал по теме: «Электричество для начинающих». Он даст первоначальное представление о терминах и явлениях, связанных с движением электронов в металлах.

Особенности термина

Электричество представляет собой энергию маленьких заряженных частиц, движущихся в проводниках в определенном направлении.

При постоянном токе не наблюдается изменения его величины, а также направления движения за определенный промежуток времени. Если в качестве источника тока выбирается гальванический элемент (батарейка), в таком случае заряд движется упорядоченно: от отрицательного полюса к положительному концу. Процесс продолжается до тех пор, пока он полностью не исчезнет.

Переменный ток периодически изменяет величину, а также направление движения.

Схема передачи переменного тока

Попробуем понять, что такое фаза в электричестве. Это слово слышали все, но далеко не всем понятен его истинный смысл. Не будем углубляться в детали и подробности, выберем только тот материал, который необходим домашнему мастеру. Трехфазная сеть является способом передачи электрического тока, при котором по трем разным проводам протекает ток, а по одному идет его возврат. Например, в электрической цепи есть два провода.

По первому проводу к потребителю, например, к чайнику, идет ток. Второй провод используется для его возвращения. При размыкании такой цепи, прохождения электрического заряда внутри проводника не будет. Данная схема описывает однофазную цепь. Что такое фаза в электричестве? Фазой считают провод, по которому протекает электрический ток. Нулевым называют провод, по которому осуществляется возврат. В трехфазной цепи присутствует сразу три фазных провода.

Электрический щиток в квартире необходим для распределения электрического тока по всем помещениям. Трехфазные сети считают экономически целесообразными, поскольку для них не нужны два нулевых провода. При подходе к потребителю, идет разделение тока на три фазы, причем в каждой есть по нолю. Заземлитель, который используется в однофазной сети, не несет рабочей нагрузки. Он является предохранителем.

К примеру, при возникновении короткого замыкания появляется угроза удара током, пожара. Для предотвращения такой ситуации, величина тока не должна превышать безопасный уровень, избыток уходит в землю.

Пособие "Школа для электрика" поможет начинающих мастерам справляться с некоторыми поломками бытовых приборов. Например, если возникли проблемы при функционировании электрического двигателя стиральной машины, ток будет попадать на внешний металлический корпус.

При отсутствии заземления заряд будет распределяться по машине. При прикосновении к ней руками, в роли заземлителя выступит человек, получив удар электрическим током. При наличии провода заземления такой ситуации не возникнет.

Особенности электротехники

Пособие «Электричество для чайников» пользуется популярностью у тех, кто далек от физики, но планирует использовать эту науку в практических целях.

Датой появления электротехники считают начало девятнадцатого века. Именно в это время был создан первый источник тока. Открытия, сделанные в области магнетизма и электричества, сумели обогатить науку новыми понятиями и фактами, обладающими важным практическим значением.

Пособие «Школа для электрика» предполагает знакомство с основными терминами, касающимися электричества.

Во многих сборниках по физике есть сложные электрические схемы, а также разнообразные непонятные термины. Для того чтобы новички могли разобраться во всех тонкостях данного раздела физики, было разработано специальное пособие «Электричество для чайников». Экскурсию в мир электрона необходимо начинать с рассмотрения теоретических законов и понятий. Наглядные примеры, исторические факты, используемые в книге «Электричество для чайников», помогут начинающим электрикам усваивать знания. Для проверки успеваемости можно использовать задания, тесты, упражнения, связанные с электричеством.

Если вы понимаете, что у вас недостаточно теоретических знаний для того, чтобы самостоятельно справиться с подключением электрической проводки, обратитесь к справочникам для «чайников».

Безопасность и практика

Для начала нужно внимательно изучить раздел, касающийся техники безопасности. В таком случае во время работ, связанных с электричеством, не будет возникать чрезвычайных ситуаций, опасных для здоровья.

Для того чтобы на практике реализовать теоретические знания, полученные после самостоятельного изучения основ электротехники, можно начать со старой бытовой техники. До начала ремонта обязательно ознакомьтесь с инструкцией, прилагаемой к прибору. Не забывайте, что с электричеством шутить не нужно.

Электрический ток связан с передвижением электронов в проводниках. Если вещество не способно проводить ток, его называют диэлектриком (изолятором).

Для движения свободных электронов от одного полюса к другому между ними должна существовать определенная разность потенциалов.

Интенсивность тока, проходящего через проводник, связана с количеством электронов, проходящих через поперечное сечение проводника.

На скорость прохождения тока влияет материал, длина, площадь сечения проводника. При увеличении длины провода, увеличивается его сопротивление.

Заключение

Электричество является важным и сложным разделом физики. Пособие "Электричество для чайников" рассматривает основные величины, характеризующие эффективность работы электрических двигателей. Единицами измерения напряжения являются вольты, ток определяется в амперах.

У любого источника электрической энергии существует определенная мощность. Она подразумевает количество электричества, вырабатываемое прибором за определенный промежуток времени. Потребители энергии (холодильники, стиральные машины, чайники, утюги) также имеют мощность, расходуя электричество во время работы. При желании можно провести математические расчеты, определить примерную плату за каждый бытовой прибор.

Электрический ток

Классическая электродинамика
Электричество · Магнетизм
Электростатика Магнитостатика Электродинамика Электрическая цепь Ковариантная формулировка Известные учёные
См. также: Портал:Физика
У этого термина существуют и другие значения, см. Ток.

Электри́ческий ток - направленное (упорядоченное) движение частиц или квазичастиц - носителей электрического заряда.

Такими носителями могут являться: в металлах - электроны, в электролитах - ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определённых условиях - электроны, в полупроводниках - электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (не происходит в сверхпроводниках);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости . Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционным .

Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.

  • Постоянный ток - ток, направление и величина которого не меняются во времени.
  • Переменный ток - электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток - электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток - периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток - «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты - переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей (см. Длинная линия) .
  • Пульсирующий ток - это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток - это электрический ток, не изменяющий своего направления.

Вихревые токи

Основная статья: Вихревые токи

Вихревые токи (токи Фуко) - «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц..

Дрейфовая скорость электронов

Скорость (дрейфовая) направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм - в 20 раз медленнее скорости улитки[источник не указан 257 дней ]. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока

Основная статья: Сила тока

Электрический ток имеет количественные характеристики: скалярную - силу тока, и векторную - плотность тока.

Сила тока - физическая величина, равная отношению количества заряда Δ Q {\displaystyle \Delta Q} , прошедшего за некоторое время Δ t {\displaystyle \Delta t} через поперечное сечение проводника, к величине этого промежутка времени.

I = Δ Q Δ t . {\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A).

По закону Ома сила тока I {\displaystyle I} на участке цепи прямо пропорциональна напряжению U {\displaystyle U} , приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению R {\displaystyle R} :

I = U R . {\displaystyle I={\frac {U}{R}}.}

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна. Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.

Плотность тока - вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде j → {\displaystyle {\vec {j}}} пропорциональна напряжённости электрического поля E → {\displaystyle {\vec {E}}} и проводимости среды σ {\displaystyle \ \sigma } :

J → = σ E → . {\displaystyle {\vec {j}}=\sigma {\vec {E}}.}

Мощность

Основная статья: Закон Джоуля - Ленца

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление - сопротивление теплообразованию;
  • реактивное сопротивление - «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ).

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля - Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

P = I U = I 2 R = U 2 R {\displaystyle P=IU=I^{2}R={\frac {U^{2}}{R}}}

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь p {\displaystyle p} определяется скалярным произведением вектора плотности тока j → {\displaystyle {\vec {j}}} и вектора напряжённости электрического поля E → {\displaystyle {\vec {E}}} в данной точке:

P = (j → E →) = σ E 2 = j 2 σ {\displaystyle p=\left({\vec {j}}{\vec {E}}\right)=\sigma E^{2}={\frac {j^{2}}{\sigma }}}

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны λ {\displaystyle \lambda } , зависимость сопротивления от длины волны и проводника относительно проста:

R = 3200 (L λ) {\displaystyle R=3200\left({\frac {L}{\lambda }}\right)}

Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота

См. также: Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока - наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения

Основная статья: Ток смещения (электродинамика)

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения j D → {\displaystyle {\vec {j_{D}}}} - векторная величина, пропорциональная скорости изменения электрического поля E → {\displaystyle {\vec {E}}} во времени:

J D → = ∂ E → ∂ t {\displaystyle {\vec {j_{D}}}={\frac {\partial {\vec {E}}}{\partial t}}}

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения I D {\displaystyle I_{D}} в конденсаторе определяется по формуле:

I D = d Q d t = − C d U d t {\displaystyle I_{D}={\frac {{\rm {d}}Q}{{\rm {d}}t}}=-C{\frac {{\rm {d}}U}{{\rm {d}}t}}} ,

где Q {\displaystyle Q} - заряд на обкладках конденсатора, U {\displaystyle U} - разность потенциалов между обкладками, C {\displaystyle C} - ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы - здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма - ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты - «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Электрические токи в природе

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Атмосферное электричество - электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю. Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма - естественный коронный электрический разряд.

Биотоки - движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие - электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине

  • диагностика - биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография - метод исследования функционального состояния головного мозга.
    • Электрокардиография - методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография - метод исследования моторной деятельности желудка.
    • Электромиография - метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Электробезопасность

Основная статья: Электробезопасность

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • минимально ощутимый человеком переменный ток составляет около 0,6-1,5 мА (переменный ток 50 Гц) и 5-7 мА постоянного тока;
  • пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного - 50-80 мА;
  • фибрилляционным порогом называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России, в соответствии с Правилами технической эксплуатации электроустановок потребителей и Правилами по охране труда при эксплуатации электроустановок, установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Как объяснить ребенку что такое электричество, если я сам этого не понимаю?

Svetlana52

Можно очень просто и наглядно показать что такое электричество и как оно получается, нужен для этого фонарик который работает от батарейки или маленькая лампа от фонарика - задача получить электричество, а именно чтобы лампочка зажглась. Для этого возьмем клубень картофеля и две проволоки медную и оцинкованную и втыкаем к картошку - используем как батарейку- на медном конце плюс, на оцинкованном минус - аккуратно присоединяем к фонарику, или лампочке - должна зажечься. Чтобы напряжение стало выше можно последовательно соединить несколько картофелин. Проводить такие опыты с ребенком интересно и Вам тоже, думаю, доставит удовольствие.

Ракитин сергей

Самая простая аналогия - с водопроводными трубами, по которым течет горячая вода. Насос давит на воду, создавая давление - аналогом его будет напряжение в электросети, аналогом тока - поток воды, аналог электрического сопротивления - диаметр трубы. Т.е. если труба тонкая (большое электрическое сопротивление), то струйка воды будет тоже тонкой (маленький ток), чтобы набрать ведро воды (получить электрическую мощность) через тонкую трубу нужен большой напор (большое напряжение) (поэтому высоковольтные провода сравнительно тонкие, низковольтные - толстые, хотя передается по ним одинаковая мощность).

Ну а почему вода горячая - это чтобы ребенок понял, что электрический ток может обжечь не хуже кипятка, а вот если надеть толстую резиновую перчатку (диэлектрик), то ни горячая вода, ни ток вас уже не обожгут. Ну вот как-то так (разве что вот еще - в трубах перемещаются молекулы воды, в электрических проводах - электроны, заряженные частицы атомов металла, из которого эти провода сделаны, в других материалах, типа резины, электроны крепко сидят внутри атомов, двигаться не могут, поэтому ток такие вещества не проводят).

Inna beseder

Только что хотела задать вопрос "Что такое электричество?" и попала сюда. Знаю точно, что никто до сих пор не знает, как так происходит, что когда в одном месте включают рубильник, то в другом (за сотни километров) моментально загорается лампочка. Что именно бежит по проводам? Что из себя представляет ток? А как его можно исследовать, если он бьётся, зараза))?

А ребёнку сам механизм этого процесса можно показать и на картошке, как посоветовали в Лучшем ответе. Но со мной такой номер не пройдёт!

Volck-79

Смотря сколько ему лет. Если 12-14 и он ни бельмеса не понимает, то, извините, поздно и безнадежно. Ну, а ежели лет пять или восемь (к примеру) - растолкуйте, что все эти штучки (дырочки, провода, всякие прочие красивые предметы) здорово кусаются, особенно если их трогать, лизать, во что-нибудь засовывать, или наоборот в них пальчики совать.

Анфо-анфо

Моей дочке - 3 года. В свое время я ей просто сказала, что это - опасно, и в розетки она теперь не лезет. А попозже объясню, что электричество - это такая энергия, которая дает свет, от которой работает телевизор, компьютер и другая техника. Когда станет школьницей, изучит на физике более подробно.

Ynkinamoy

знаете много способов объяснить ребенку что это нельзя,что это опасно,я думаю что ребенка надо учить этому,показывать на ризетку и говорит нельзя ва ва будет.если всё таки ребенку это интересно и он очень хочет туда залезть,надо просо установит специальные пропки что бы ребенок не смог засунуть туда палец или что то метталическое,ну лучше всего и пропки применять и учить что это будет больно ва ва,что нельзя это делать что это очень плохо что будут маме папе плохо если он будет это делать,довести до ребенка что нельзя этого делать,и пользуйтесь пропками.всё будет хорошо

Ksi makarova

Сейчас "век продвинутого интернета", задайте вопрос любому поисковику, можно даже с формулировкой "как объяснить ребенку что такое электричество"))

Я отвечая на каверзные вопросы подрастающего сына, успела таким образом множество тем изучить - и ребенку хорошо, и родителям полезно.

Инструкция

Подведите малыша к розетке и проводам. Расскажите ему о том, что по ним летают трудолюбивые пчелы, которые постоянно работают. Именно благодаря их усилиям мы можем освещать дом, пользоваться холодильником и машиной. Мешать пчелам нельзя, иначе они могут больно ужалить.

Для большей наглядности проведите следующий эксперимент, все действия которого постоянно контролируйте. Скажите ребенку о том, что можете показать ему, как жалятся совсем маленькие пчелки. Возьмите батарейку на 9 вольт и предложите малышу приставить ее к кончику языка. Объясните ребенку, что жжение, которое он испытал, является укусом тех самых «электрических» пчел. Поясните ему, что если он будет пытаться повторить такие действия не с батарейкой, пчелы очень разозлятся и ужалят гораздо сильнее.

Это можно продемонстрировать с помощью . Возьмите лампочку, рассчитанную на 12 вольт, и включите ее в электрическую сеть. Естественно, она сразу перегорит, а на внутренней части стекла останутся копоти. Объясните ребенку, что это пчелы, которые вырвались на свободу и очень разозлились, поскольку их заставили бесполезно работать.

Кроме того, не забывайте соблюдать элементарные правила безопасности. Не оставляйте электроприборы включенными в сеть без надобности, особенно если ребенок находится в комнате один. Розетки должны быть снабжены специальным поворотным или закрыты колпачками-предохранителями. По возможности не используйте удлинители, которые непременно привлекут внимание ребенка. Обязательно объясните малышу, что при любом признаке неисправности электроприборов или проводки (например, при появлении искр и треска) нельзя ничего трогать , а нужно срочно позвать на помощь взрослых.

Видео по теме

Источники:

  • Как научить ребенка не бояться электричества

В морях и океанах есть существа, обладающие удивительными и поразительными способностями вырабатывать электричество. Одним из таких созданий является электрический скат.

Как скаты вырабатывают электричество?

Все благодаря специальным электрическим органам, находящимся внутри этих существ. Они возникли как у пресноводных, так и у рыб. Известно, что такие же органы имели некоторые их ископаемые предки. Современная насчитывает более 300 видов разных рыб, имеющих электрические органы. Эти органы представляют собой видоизмененные мышцы. У тех или иных «электрорыб» они отличаются своим местоположением. Например, у они представляют собой почковидные образования.

Если говорить простым языком, то электрические органы скатов – это своеобразные мини-генераторы, вырабатывающие весьма приличный заряд тока. Этого заряда хватит на то, чтобы обездвижить не только рыбу, но и ! Есть специалисты, которые утверждают, что скаты могут за один раз вырабатывать напряжение в 300 . Электрические органы располагаются в спинной и брюшной частях тела этой «электрорыбы». Их можно сравнить с гальванической или электрической батареей.

Те рыбаки, которые имели неосторожность на себе почувствовать всю силу воздействия этой «электрорыбы», оставались крайне недовольными. По их словам, удар от электрического ската сопровождается продолжительной сонливостью, дрожью в ногах, потерей чувствительности, онемением верхних конечностей.

Возьмите кремниевый или германиевый транзистор и вскройте его, но не повредите кристалл внутри корпуса. Присоедините провода к любому из переходов, «эмиттер-база» или «коллектор-база». В солнечный день, вскрытый транзистор может заменить фотоэлемент, между проводами появится , от 0,1 до 0.2 вольт. Из нескольких транзисторов можно собрать батарею, но собирая ее, у всех транзисторов нужно выбрать один определенный переход.

Возьмите несколько стаканов и заполните их поваренной соли. Далее, возьмите несколько отрезков медной проволоки и обмотайте один конец каждого отрезка алюминиевой фольгой. Соедините стаканы с раствором проволоки, чтобы в один стакан проволока помещалась оголенным концом, а в другой обернутым в фольгу. Электрическое напряжение зависит от стаканов.

Платить за электроэнергию необходимо до 10 числа каждого месяца. Сумма оплаты зависит от прибора учета, которым вы пользуетесь. Существуют одна тарифные, двух тарифные и трех тарифные приборы учета. Если прибора учета у вас нет, то до его установки вам рассчитают средний тариф оплаты, с учетом электроприборов и количеством комнат в жилом помещении. Сумма тарифов за 1 КВт электроэнергии – разная, в зависимости от региона вашего проживания и от того пользуетесь вы электроплитой или газовой.

Инструкция

Для того чтобы оплатить по одно тарифному прибору учета, необходимо от показаний на день оплаты отнять предыдущие показания и умножить на сумму тарифа вашего региона. Если вы имеете льготы, то сумма оплаты рассчитывается с учетом льгот.

По двух тарифному прибору, посчитайте две суммы, сложите их и отнимите сумму ваших льгот (если имеются)

По трех тарифному прибору учета, посчитайте сумму трех тарифов, сложите их и отнимите сумму льгот.

За потребленную в местах общего , таких как подъезд, освещение около подъезда, в существует отдельная графа. Если на территории общего пользования стоит прибор учета, то считается сумма потребленной и делится на количество находящихся в . Жильцы каждой платят данную сумму при уплате коммунальных услуг.

Если на территории общего пользования прибор учета электроэнергии не установлен, то считается средний тариф, с учетом количества осветительных приборов. Полученная сумма делится на количество квартир и платится по квитанции коммунальных услуг.

Оплатить за электроэнергию можно в любом отделение, принимающем платежи от населения.

Видео по теме

Источники:

  • как меньше платить за электричество в 2019

Если вы построили новый дом и собираетесь провести к нему электричество , вы должны знать, с чего начать и как это оформить документально и технически. Зачастую это не так просто, как кажется. Приходится обивать пороги местных органов самоуправления, чтобы получить ту или иную справку. А ведь без электричества мы уже не представляем своей жизни.

Инструкция

Прежде чем дом в той или иной местности, узнайте о наличии ближайших инженерных коммуникаций. Наилучшим вариантом будет, если в коттеджном поселке есть своя подстанция, от которой можно протянуть линию электропередачи в свой дом.

Если все вас удовлетворяет, стройте дом и оформляйте на . Оформите письменно техническое задание, указав в нем количество планируемых электроаппаратов, а также желаемую мощность для обеспечения их эксплуатации.

Электричество было известно людям с самых давних времен. Правда практически измерять электричество человек научился только в начале 19 века. Потом понадобилось еще 70 лет до того момента, когда в 1872 году русский ученый А.Н.Лодыгин изобрел первую в мире электрическую лампочку накаливания. Но знания о таком явлении как электричество были у людей уже много тысяч лет назад. Ведь ещё древний человек заметил удивительное свойство натертой янтарём шерсти притягивать нитки, пыль и другие мелкие предметы. Гораздо позже данное свойство было замечено и за другими веществами, такими как сера, сургуч и стекло. И по причине того, что «янтарь» по-гречески звучал как «электрон», эти свойства начали называться электрическими.

А причина возникновения электричества заключается в том, что при трении заряд делится на положительные и отрицательные заряды. Соответственно, заряды с одним знаком отталкиваются друг от друга, а с разными - притягиваются. Двигаясь по металлической проволоке, которая является проводником, эти заряды и создают электричество.
Без электричества в наше время просто невозможно представить нормальную цивилизованную жизнь. Оно светит, греет, даёт нам возможность общаться на огромных расстояниях друг от друга и т. п. Электрический ток приводит в действие самые различные агрегаты и приборы - от маленького будильника до огромного прокатного стана. Поэтому если представить, что однажды электричество может исчезнуть одновременно на всей планете, жизнь человека резко изменит свое направление. Мы уже не можем обходиться без электрического тока, ведь он питает и заставляет работать практически все механизмы и приборы, придуманные человеком. И если посмотреть вокруг себя, то можно увидеть, что в любой квартире, хотя бы в одну из розеток будет воткнута штепсельная вилка, от которой идет провод в магнитофон, телевизор, микроволновую печь или в другие приборы, которые мы ежедневно используем дома или на работе.
Сегодня без электричества не сможет прожить ни одна цивилизованная страна. Каким же образом добывается такое огромное количество электроэнергии, которое может обеспечить потребности миллиардов людей, живущих на Земле?
Для этих целей созданы электростанции . На них при помощи генераторов и создаётся электроэнергия, которая затем передаётся на огромные расстояния по линиям электропередач. Электростанции бывают разных видов. Одни для получения электричества используют энергию воды, они называются гидроэлектростанции. Другие получают энергию от сгорания топлива (газа, дизельного топлива или угля). Это тепловые электростанции, которые вырабатывают не только электрический ток, но и могут одновременно нагревать воду, которая затем поступает в отопительные трубы, греющие помещения домов или цехов заводов. А есть ещё атомные электростанции, ветровые, приливные, солнечные и многие другие.
В гидроэлектростанции (ГЭС) поток воды вращает турбины генератора, который вырабатывает электроэнергию. В тепловых электростанциях (ТЭС) эта обязанность возложена на водяной пар, который образуется в результате нагрева воды от сгорания топлива. Водяной пар под очень большим давлением врывается в турбины генератора, где расположено множество вертящихся частей снабженных специальными лепестками, напоминающими пропеллеры самолета. Пар, проходя через лепестки, вращает рабочие агрегаты генератора, благодаря чему и вырабатывается электрический ток.
Похожий принцип используется и в атомной электростанции (АЭС), только там топливом служат радиоактивные материалы - уран и плутоний. Благодаря особым свойствам урана и плутония они выделяют очень большое количество тепла, которое используется для нагрева воды и добывания водяного пара. Потом нагретый пар поступает в турбину и происходит выработка электрического тока. Интересно, что всего десять граммов подобного топлива заменяет целый вагон угля.

В основном электростанции не работают сами по себе. Они связаны между собой линиями электропередач. С их помощью электроэнергия направляется туда, где она больше всего нужна. Линии электропередач протянулись по всей нашей необъятной стране, поэтому тот ток, который мы используем у себя дома может вырабатываться очень далеко, за сотни километров от нашей квартиры. Но где бы ни стояла электростанция, благодаря линиям электропередачи каждый человек сможет воткнуть вилку и розетку и включить любой необходимый ему прибор или устройство.

Электричество кругом,
Полон им завод и дом,
Везде заряды: там и тут,
В любом атоме «живут».
А если вдруг они бегут,
То тут же токи создают.
Нам токи очень помогают,
Жизнь кардинально облегчают!
Удивительно оно,
на благо нам обращено,
Всех проводов «величество»
Зовется: «Электричество»!

Цель:
Узнать больше об электричестве и его роли в жизни человека.

Задачи:
Изучить информацию об электричестве.
Получить знания о пользе электричества.
Познакомиться со статическим (безопасным) электричеством.
Освоить технику безопасности при обращении с электроприборами.
Исследовать электричество с помощью опытов.
Изобрести собственный электрический прибор.

Гипотеза:
Я предположил, что:
1. Электричество очень полезно;
2. Неправильное обращение с электроприборами может быть опасным;
3. Можно самим изобрести электрический прибор.

Актуальность работы заключается в том, что современная жизнь не возможна без электричества. Любое производство, освещение улиц и домов, работа медицинского и бытового оборудования и многое другое - зависит от наличия электричества. Но если же с ним неправильно обращаться, оно может стать опасным для жизни.

Методы исследования:
1. Изучение специальной литературы.
2. Просмотр видеороликов.
3. Наблюдение.
4. Эксперимент.
5. Опыт.
6. Анализ полученных данных.
7. Обобщение.
Что такое электричество?

На протяжении многих веков люди не подозревали о существовании электричества. А молния воспринималась как проявление необъяснимых божественных сил. Как же удавалось людям, живущим в окружении электрических и магнитных полей, совершенно их не замечать? Это происходило потому, что свободное электричество в природе встречается очень редко. Древние греки заметили, что если потереть кусочек янтаря шерстью, он будет обладать способностью притягивать легкие предметы. Янтарь по-гречески называется электроном, и поэтому вещества, приведенные в данное состояние, стали называть наэлектризованными. Почему возникает это явление, греки объяснить не могли.
Первые шаги к пониманию природы электричества были сделаны в середине XVIII века, когда французский физик Кулон открыл закон о взаимодействии электрических зарядов. Электрический заряд возникает при избытке или недостатке электрически заряженных частиц. Любое тело, заряженное отрицательно, например дождевое облако, расческа, стеклянная палочка, испытывает недостаток протонов, так как в нем преобладают электроны. И наоборот, тела, заряженные положительно, содержат избыток протонов. Когда общее количество протонов и электронов одинаково, то тело не имеет электрического заряда.
Упорядоченное движение свободных электрически заряженных частиц называется электрическим током.
В конце XVIII века итальянский физик Алессандро Вольта создал первый источник тока и дал физикам возможность проводить опыты с электрическим током.
Получают электричество на теплоэлектростанцях, атомных электростанциях, гидроэлектростанциях. Оно может возникать из солнечной энергии, падающей воды, специальных устройств - генераторов, либо получаться при возникновении какой-либо химической реакции. В целях хранения изобрели аккумуляторы и электрические батареи.
Силу электрического тока можно измерить. Единица измерения силы тока — Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика - Андре Ампер.

Где живет электричество
Электрические явления были непонятны и опасны для жизни, они вселяли страх. Но постепенно опыт накапливался, и люди начали понимать некоторые из них, научились создавать и использовать электричество в своих нуждах. Мы знаем, где оно живет: в проводах, подвешенных на высоких мачтах, в комнатной электропроводке и еще в батарейке карманного фонаря. Но все это электричество домашнее, ручное. Человек его изловил и заставил работать. Оно потрескивает в никелированном теле электроутюга. Сияет в лампочке. Гудит в электродвигателях. Весело распевает в радиоприемниках. Да мало ли что еще может делать электричество.
Современная жизнь немыслима без радио и телевидения, телефонов и телеграфа, осветительных и нагревательных приборов, машин и устройств, в основе которых лежит возможность использования электрического тока. Возможности электричества поражали: передача энергии и разнообразных электрических сигналов на большие расстояния, превращение электрической энергии в механическую, тепловую, световую …
Ну, а есть ли на свете электричество дикое, неприрученное? Такое, которое живет само по себе? Да, есть. Оно вспыхивает ослепительным зигзагом в грозовых тучах. Оно светится на мачтах кораблей в душные тропические ночи. Но оно есть не только в облаках, и не только под тропиками. Тихое, незаметное, оно живет всюду. Даже у нас в комнате. Мы часто держим его в руках и сами об этом не знаем. Но его можно обнаружить.

Статическое электричество. Его вред и польза.
Статическое электричество — одно из интереснейших явлений природы. Действие статического электричества основано на том, что все предметы имеют положительный электрический заряд и отрицательный. Положительно и отрицательно заряженные объекты притягиваются друг к другу, как магнит, - поскольку один из них желает сбросить лишние электроны, а другой, наоборот, получить их. Статическое электричество может возникнуть от ходьбы по шерстяному ковру, при надевании свитера, расчесывании волос, контакте с полиэтиленом или пенопластом. Статическое электричество относительно безопасно для человека. Когда статическое электричество становится достаточно мощным, электроны перескакивают с одного предмета на другой в таком количестве, что это порождает видимую электрическую искру (электрический разряд).
А если одним из объектов, между которыми перескакивают электроны, являетесь вы, то вы почувствуете легкий «удар».
Молния, между прочим, представляет собой гигантскую электрическую искру, электрический разряд в результате накапливания статического электричества в туче во время грозы. Естественно, сила таких зарядов очень высока и молнии смертельно опасны для человека.
При правильном использовании статическое электричество может приносить немало пользы. Чтобы очистить воздух от пыли, сажи, кислотных и щелочных паров, прибегают к электростатическим фильтрам. Рыба будет коптиться быстрее, если ее поместить в специальную электрокамеру, где конвейер с продуктом заряжен положительно, а электроды - отрицательно. Работа ксероксов и лазерных принтеров также основана на действии статического электричества: положительные заряды образуют на барабане изображение оригинала и притягивают частицы краски, создавая картину. Затем порошок переносится на лист заряженной бумаги, где горячие валики укатывают ее в бумагу.

Опыты со статическим электричеством
Наглядно феномен статического электричества можно объяснить на основе опытов.
А как вы думаете, в шарике есть электричество? А я вам сейчас докажу, что в воздушном шарике живёт безопасное электричество.

1. «Бабочка»
Для этого нам понадобится квадратный лист папиросной бумаги размером 10х10 см. На нем необходимо нарисовать бабочку и аккуратно вырезать. Далее тело бабочки нужно приклеить к плотному картону. Зарядив воздушный шар, можно заставить двигаться крылья. Для этого производят трение шарика о волосы или шерстяной шарф. Шарик приобретет заряд. Поднося шарик к крыльям, избыточный заряд шарика будет притягивать к себе крылья. Убирая шарик далеко от крыльев, они снова будут опускаться. Многократным повтором таких движений можно имитировать полет бабочки.
Вывод: при трении шарик приобретает электрический заряд. А избыточный заряд шарика притягивает к себе крылья бабочки.

2. «Волосы дыбом»
Воздушный шар трем о шерстяной шарф, дотрагиваемся до волос. Волосы «оживают», становятся «дыбом».
Вывод: волосы «оживают» под действием статического электричества, возникающего из-за трения расчески с шерстью.
«Золушка»
Высыплем на тарелку перец и соль и тщательно их перемешаем. Потрем шарик о шерстяной шарф, затем поднесем его к смеси соли и перца. Перец прилипнет к шарику, а соль останется на столе. Это еще один пример действия статического электричества. Когда мы потерли шарик шерстяной тканью, он приобрел отрицательный заряд. Потом мы поднесли шарик к смеси перца с солью, перец начал притягиваться к нему. Это произошло потому, что электроны в перечных пылинках стремились переместиться как можно дальше от шарика. Следовательно, часть перчинок, ближайшая к шарику, приобрела положительный заряд и притянулась отрицательным зарядом шарика. Перец прилип к шарику. Соль не притягивается к шарику, так как в этом веществе электроны перемещаются плохо. Когда мы подносим к соли заряженный шарик, ее электроны все равно остаются на своих местах.
Вывод: соль со стороны шарика не приобретает заряда, она остается незаряженной или нейтральной. Поэтому соль не прилипает к отрицательно заряженному шарику.
В результате контакта не во всех предметах возможно разделение статических электрических разрядов.

Проводники электричества
Вещества, по которым передаются электрические заряды, называют проводниками электричества.
Хорошие проводники электричества — металлы, почва, растворы солей, кислот или щелочей в воде, графит. Тело человека также проводит электричество.
Из металлов лучшие проводники электричества серебро, медь и алюминий, поэтому провода электрической сети чаще всего делают из меди или алюминия.
Вещества, по которым заряды не передаются, называют непроводниками (или изоляторами). К хорошим изоляторам относятся камень янтарь, фарфор, резина, различные пластмассы, шелк, шерсть, керосин, масла. Изоляторы (например, резиновую оболочку кабеля) применяют для изоляции проводов, по которым течет ток, от внешних предметов.
Используя набор "Юный физик" мы собрали простую электрическую цепь, которая состоит из батарейки, проводов и лампочки. При помощи них мы наглядно убедились, какие предметы проводят электрический ток, а какие нет. Для эксперимента мы взяли: резиновый воздушный шарик, пластмассовую ложку, кусок древесины, кусок шерстяной ткани, металлическую монетку и питьевую воду. При контакте одного конца провода к воздушному шарику, пластмассовой ложке, куску древесины, куску шерстяной ткани лампочка не загоралась, так как эти предметы не проводят электрический ток, а при контакте с металлической монеткой - лампочка загорелась. Это говорит, что металл проводит электрический ток.
То же самое мы проделали с водой: опустили провода в чистую воду, лампочка не зажглась. Добавили в воду соль, тщательно перемешали. Цепь замыкается, лампочка горит. Значит, чистая вода не проводит ток, а неочищенная является проводником электричества.

Изготовление электрического прибора
Мы с братом тоже изобрели электрический прибор, который называется "Сигнализатор затопления". Сигнализатор состоит из корпуса, динамика, батарейки и двух проводов. В самом начале мы соединили все элементы. Электронная часть находится в коробе, в который вмонтировали динамик. Провода, которые будут контактировать с водой оголили, чтобы они могли проводить электрический ток. Всю эту конструкцию помещаем в контейнер.
Вода является проводником для электрического тока. На этом основан принцип действия нашего сигнализатора. Поэтому когда мы наливаем в наш прибор воду, она попадает на два провода из устройства, происходит замыкание электрической цепи, и прибор издает звуковой сигнал.
Основное назначение сигнализатора - предупреждение о затоплении помещения. Такой прибор можно установить на полу на кухне или в ванной. В случае протечки мы сразу же об этом узнаем.
А также дополнительным свойством сигнализатора является проверка чистоты дистиллированной воды. Проверка основывается на том, что дистиллированная вода не пропускает электрический ток. Значит, если контакты опустить в ёмкость с дистиллированной водой, электрический ток не пойдёт по проводам, и сигнализатор не пропищит. Мы получили датчик чистоты дистиллированной воды.

Техника безопасности при обращении с электроприборами
Бытовые электроприборы облегчают труд женщин, сокращают время на выполнение домашних работ. При обращении с ними нужно строго выполнять правила безопасности. Нарушение этих правил может стать причиной несчастных случаев
1. Соблюдайте порядок включения электроприборов в сеть - шнур сначала подключайте к прибору, а затем к сети. Например, если вы ставите на зарядку мобильный телефон, то сначала подключите шнур к телефону, а затем вставляйте шнур в розетку. Отключение прибора произведите в обратном порядке.
2. Не вставляйте вилку в штепсельную розетку мокрыми руками.
3. Не пользуйтесь электроутюгом, плиткой, чайником, паяльником без специальных несгораемых подставок.
4. Опасно использовать электроприбор с поврежденной изоляцией шнура.
Если вы увидели оголенный провод, неисправный выключатель, розетку - сразу сообщите об этом взрослым.
5. Не прикасайтесь к нагреваемой воде и сосуду (если он металлический) при включенном в сеть нагревателе.
6. Не оставляйте без присмотра электронагревательные приборы, включенные в сеть.
8. Никогда не тяните за электрический провод руками.
9. Нельзя защемлять электрические провода дверями, оконными рамами. Нужно следить за тем, чтобы провода сильно не перекручивались, не соприкасались с батареями отопления, трубами водопровода, с телефонными проводами.
10. Приборы, в которых кипятят воду (электрочайники), нельзя включать в сеть пустыми. Их нужно наполнить водой не меньше чем на одну треть. Когда наливают воду в электрический чайник, они должны быть обязательно выключены.
Включать и выключать любой электробытовой прибор нужно одной рукой, не касаясь при этом водопроводных, газовых и отопительных труб.

Без электричества представить нашу современную жизнь практически невозможно. Электричество - это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник, ставим подогревать пищу в микроволновую печь, пользуемся лифтом, трудимся на предприятиях, в банках и больницах, учимся в школе, где тепло и светло. И везде «работает» электричество.
Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону. Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху. Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру.
Бережно относится к электричеству, экономить его нужно для того, чтобы уменьшить вредное воздействие на окружающую среду. Теплоэлектростанции используют уголь, газ или нефть, то есть невозобновляемые запасы полезных ископаемых, и выбрасывают углекислый газ в атмосферу. В случае с атомной электростанцией проблема заключается в тех радиоактивных отходах, которые еще не научились перерабатывать так, чтобы сделать их абсолютно безопасными для окружающей среды. Даже гидроэлектростанции, которые получают электричество за счет энергии падающей воды, вредят экологии: их строительство приводит к затоплению ценных сельскохозяйственных земель. Если каждый из нас будет экономить электроэнергию, внедряя энергосберегающие технологии или вовремя выключая свет, значительно снизится необходимая мощность электрических станций.

Таким образом, я:
Узнал больше об электричестве, о его роли в жизни человека.
Познакомился со статическим (безопасным) электричеством.
Закрепил знания о технике безопасности при обращении с электроприборами.
Изобрёл собственный электрический прибор - сигнализатор затопления
Мне понравилось проводить опыты, эксперименты с электричеством, искать ответы на вопросы.
Оказывается, рядом с нами столько неизвестных нам явлений! Мы многое не знаем и не можем пока объяснить. Но думаем, что продолжим наши исследования по теме «Электричество» и, возможно, изобретём ещё один важный для человека электрический прибор!

Электричество окружает детей повсюду: дома, на улице, в детсаду, в игрушках и бытовых приборах - сложно вспомнить сферу жизнедеятельности человека, где обходились бы без тока. А потому интерес детей к данной теме вполне объясним. Хотя рассказ о свойствах электричества - не только вопрос любознательности, но и… безопасности малыша!

В 2-3 года у маленького человечка начинается период, когда ему интересно все. Что это, зачем, как работает, почему оно такое, а не иное, как этим пользуются, чем полезно или вредно - миллион вопросов в сутки папе и маме гарантирован. Причем сфера интересов «почемучки» обширна: его волнуют как приземленные темы (вроде того, или ), так и возвышенные ( , ). И расспросы об электричестве также естественны. Что такое ток, откуда берется и куда пропадает, когда щелкаем выключателем? Почему от электричества светится лампочка, и работает телевизор? Как папин или его работают без провода к розетке? Чем так опасен ток, что родители запрещают даже приближаться к этой розетке? Вариантов не счесть! Конечно, можно отмахнуться от них, сказав, что ребенок еще мал, чтобы понять эту тему (с точки зрения науки, электричество столь сложное понятие, о котором можно рассуждать не раньше 12-14 лет). Но такой подход ошибочен. Причем с точки зрения и воспитания, и безопасности. Пусть малыш не разберется в физике процесса, но знать суть электротока и относиться к нему с должным уважением ему вполне под силу.

Электричество: пчелы или электроны?

Итак, начнем с базового вопроса: что такое электричество? В общении с ребенком 2-3 лет возможно несколько подходов. Первый: игровой. Можно рассказать малышу, что внутри проводов живут, например, маленькие пчелы или муравьи, фактически невидимые человеческому глазу. И когда электроприбор выключен, они там покоятся, отдыхают. Но стоит подключить его к розетке (либо нажать на выключатель, если он соединен с сетью), как они начинают трудиться: бегать либо летать внутри провода вперед и назад без устали! И от такого их движения вырабатывается энергия, зажигающая лампочку или позволяющая работать тем или иным приборам. Причем количество таких пчелок-муравьишек в проводе может быть разным. Чем их больше и чем активнее они двигаются, тем выше сила тока - а значит, тем больший механизм они могут запустить. Проще говоря, чтобы светилась лампочка в карманном фонарике, нужно совсем мало таких «помощников», а чтобы осветить дом - нужно иметь запас электричества намного, намного больше. И тут важно подчеркнуть: такие пчелы хоть и работают на пользу людей, но могут серьезно обидеться, если к ним относиться небрежно. Причем обидой дело не ограничится - они могут и больно-больно укусить (и чем больше пчелок, тем сильнее будет укус). А потому нельзя лезть в розетку или разбирать электроприбор, а также касаться оголенных проводов у подключенных приборов - пчелам может не понравиться, что кто-то пытается мешать им работать…

Если же вам такой подход не по душе, вы предпочитаете отвечать ребенку на его вопросы с полной серьезностью, тогда можно рассказать о физическом явлении электричества, только адаптировав его для маленького человечка. Поясните, что внутри металлических проводов есть микрочастицы - электроны. Они, с одной стороны, настолько мелкие, что их даже в микроскоп невозможно рассмотреть, а с другой - их очень много. В обычном состоянии они находятся на одном месте и ничего не делают. Но когда включаете прибор, электроны начинают с большой скоростью передвигаться внутри проводов. Это движение и рождает энергию электричества. Чтобы малышу было понятно, как такое возможно, можно сравнить это с водой в трубах - не зря же говорят, что ток по проводам течет. Словно капли жидкости в трубочке, подталкивающие друг друга, следующие одна за другой, бегущие, пока не перекрыт вентиль, электроны действуют точно так - только у них вместо вентиля выключатель. А еще от прямого контакта с электронами, в отличие от воды, вы не намокаете, а получаете электрический удар. Это самый настоящий удар: ведь электронов очень много и они бегут с огромной скоростью. А потому, если встать у них на пути, они бьются в кожу с большой силой, что, конечно, очень больно. Поэтому, если прибор включен в розетку или оголился провод (что по сути равноценно разрыву трубы, когда вода вытекает наружу: и чем больше воды, тем сильнее ее напор), нельзя мешать ему. Пусть электроны тратят энергию на лампочку, а не на то, чтобы потратить ее, обидев малыша!

Демонстрируйте электроток на примерах

Какой бы подход в рассказе об электричестве вы ни выбрали, логичным для детей выступает следующий вопрос: а почему при включении прибора пчелы или электроны начинают в проводе двигаться, что их заставляет делать это? В таком случае надо в общих чертах рассказать о строении электросети, и желательно делать это с приведением наглядных примеров из окружающей жизни либо на фото- и видеоматериалах. Расскажите, что все-все провода в доме сходятся в один кабель, вмещающий нужное для жилья количество электронов/пчел. Далее он выходит на улицу и, опираясь на столбы, ведет к фабрике, где и производят эти частицы, - такой завод называют электростанцией. О том, как их производят (сжиганием угля, от привода на гидроэлектростанции или ветряках, от солнечных батарей), можно рассказать по желанию, если ребенок проявляет к этому интерес. Но обычно в 2-3 года хватает понятия, что есть такая фабрика, где делают «электрических пчел» или электроны. Хотя никто не запрещает провести вам с ребенком маленький, но наглядный эксперимент. Вам понадобится простейшая динамо-машина: с лампочкой и ручкой, от вращения которой светится лампочка. Малыш наверняка придет в восторг, видя, что может производить собственными руками электричество! Причем стоит ему перестать вращать рукоятку, и лампочка сразу гаснет - очень наглядно и просто.

Экспериментальная практика вообще крайне полезна - особенно в тех вопросах, где надо показать, что ток опасен. Для этого вам понадобится несколько батареек и пара лампочек. Вначале поясните, что батарейка - это такой маленький запас электричества: как консервы с едой, в которых припасено электронов для питания приборов на какое-то время. А потом покажите, как она работает: установили ее в игрушку и телефон, они работают. Закончился заряд пчелок/электронов - прибор выключился: и нужны или новые батарейки, или зарядить старые, «залив» из розетки партию «помощников» (подчеркните, что заряжать можно не все, а только батареи, называемые аккумуляторами). Теперь переходите к экспериментам. Возьмите батарейку на 9 В (ту, что принято именовать кроной) и предложите малышу прикоснуться одновременно к обоим контактам языком. Легкое жжение, которое почувствует, и есть проявление электрического удара - только слабым, ведь в батарейке пчелок или электронов очень мало. А в розетке их на порядок больше, а удар в десятки раз сильнее и больнее. Конечно, немалое количество детей захочет убедиться в этом. Потому нужен иной эксперимент: с парой разных лампочек - на 4,5 В и 9 В. Подключите ко все той же батарейке последнюю - она светится. А затем присоедините ту, что рассчитана на меньшее напряжение, - и она перегорит, причем эффектно: с хлопком, вспышкой и почерневшим изнутри стеклом… Объясните, что для столь маленькой лампочки электронов в батарее слишком много, либо что пчелам не понравилось, что с ними играют без толку, и они испортили ее. Так и в розетке для человека - тока много или пчелы обидятся, и он может сильно пострадать.

Научите аккуратному обращению с электричеством!

Только помните: ваша цель - не запугать ребенка. Если в этом вопросе перегнете палку, велик риск, что в душе малыша поселится страх перед электричеством. Он будет панически бояться его, ему будет сложно пользоваться электроприборами, он будет их избегать и стараться сам их не включать. Правильнее не напугать, а научить аккуратности и бережливому отношению к току. Потому рассказывайте про риски, но не приукрашайте чрез меры все детали.

Для обучения обращению с электричеством уделите внимание на эти пункты:

нельзя включать любые электроприборы в доме без разрешения взрослых, они должны знать, что малыш включает и выключает телевизор, или другой крупный электроприбор;

недопустимо разбирать электрические приборы, даже если они отключены от розетки или малышу кажется, что требуется заменить какую-то деталь - например, перегоревшую лампочку в ;

нужно сразу же сообщать взрослым о любой проблеме с электроприбором: если перестал работать, начал неприятно пахнуть, дымиться или искрить, если разбился его корпус или порвался провод;

ни в коем случае нельзя мочить электроприбор или провода - вода, с одной стороны, может вывести его из строя, а с другой, является хорошим проводником для тока, а потому через нее может пойти электроудар;

обращаться с электроприборами надо аккуратно, не бросать их и не бить, все провода надо скручивать бережно, без изломов, а вытягивать их из розетки нужно не резко и не за провод, а плавно и за защитный штепсель;

на улице нельзя подходить к висящим со столба или торчащим из земли оборванным проводам и тем более касаться их, запрещено открывать дверцы трансформаторных будок и электрощитков;

покажите ребенку общепринятые символы электричества, которые должны сказать ему, что приближаться к обозначенным ими предметам и строениям без ведома взрослых не стоит ни при каких обстоятельствах.

И не забудьте к любопытству ребенка. Как бы вы ему ни втолковывали правила безопасности, он в любом случае осознанно или нет, малыш хоть раз попытается залезть в розетку, порвать провод и разбить электроприбор. Потому различные приспособления, от заглушек до специальных креплений для кабелей, жизненно необходимы!

А ваш ребенок уже знает про пользу и опасность электричества?

7 62912
Оставить комментарии 7