Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Как найти возрастание и убывание функции. Достаточные признаки возрастания и убывания функции

Экстремумы функции

Определение 2

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.

Определение 3

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.

Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.

Определение 4

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.

Теорема 2

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)

Данная теорема проиллюстрирована на рисунке 1.

Рисунок 1. Достаточное условие существования экстремумов

Примеры экстремумов (Рис. 2).

Рисунок 2. Примеры точек экстремумов

Правило исследования функции на экстремум

2) Найти производную $f"(x)$;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Возрастание и убывание функции

Введем, для начала, определения возрастающей и убывающей функций.

Определение 5

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Определение 6

Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Исследование функции на возрастание и убывание

Исследовать функции на возрастание и убывание можно с помощью производной.

Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:

1) Найти область определения функции $f(x)$;

2) Найти производную $f"(x)$;

3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;

4) Найти точки, в которых $f"(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.

Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов

Пример 1

Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$

Так как первые 6 пунктов совпадают, проведем для начала их.

1) Область определения - все действительные числа;

2) $f"\left(x\right)=6x^2-30x+36$;

3) $f"\left(x\right)=0$;

\ \ \

4) $f"(x)$ существует во всех точках области определения;

5) Координатная прямая:

Рисунок 3.

6) Определить знак производной $f"(x)$ на каждом промежутке:

\ \.

Областью значений функции явл. промежуток [ 1; 3].

1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.

Значение аргумента, при котором значение функции равно нулю, называют нулем функции.

//т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.

2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.

Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.

В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).

3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.

С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.

Функцию f называют , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке , если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.

Функцию f называют убывающей на некотором промежутке , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.

Если функция возрастает на всей области определения, то ее называют возрастающей .

Если функция убывает на всей области определения, то ее называют убывающей .

Пример 1. график возрастающей и убывающей функций соотвественно.

Пример 2.

Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?

Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7

1. Найти область определения функции

2.Найти производную функции

3. Приравнять производную к нулю и найти критические точки функции

4. Отметить критические точки на области определения

5. Вычислить знак производной в каждом из полученных интервалов

6. Выяснить поведение функции в каждом интервале.

Пример: Найдите промежутки возрастания и убывания функции f (x ) = и число нулей данной функции на промежутке .

Решение:

1. D(f ) = R

2. f "(x ) =

D(f ") = D(f ) = R

3. Найдём критические точки функции, решив уравнение f "(x ) = 0.

x (x – 10) = 0

критические точки функции x = 0 и x = 10.

4. Определим знак производной.

f "(x ) + – +


f (x ) 0 10 x

в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x ) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; .

Определим знак значений функции на концах отрезка.

f (0) = 3, f (0) > 0

f (10) = , f (10) < 0.

Так как на отрезке функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.

Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; ;

на промежутке функция имеет один нуль функции.

2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум .

Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.

Определение 2 . Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.

Следует иметь в виду, что максимум и минимум в данном случае являются локальными.

На рис. 1. изображены локальные максимумы и минимумы.

Максимум и минимум функции объединены общим названием: экстремум функции.

Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .

Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.