Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Влияние симпатической нервной системы увеличивает 2. Вегетативная нервная система. Функции парасимпатической нервной системы

ВНС состоит из :

симпатического

парасимпатического отделов.

Оба отдела иннервируют большинство внутренних органов и часто оказывают противоположное действие.

Центры ВНС расположены в среднем, продолговатом и спинном мозге.

В рефлекторной дуге вегетативной части нервной системы импульс от центра передается по двум нейронам.

Следовательно, простая вегетативная рефлекторная дуга представлена тремя нейронами :

первое звено рефлекторной дуги – это чувствительный нейрон , рецептор которого берет начало в органах и тканях

второе звено рефлекторной дуги несет импульсы из спинного или головного мозга к рабочему органу. Этот путь вегетативной рефлекторной дуги представлен двумя нейронами . Первый из этих нейронов располагается в вегетативных ядрах нервной системы. Второй нейрон – это двигательный нейрон, тело которого лежит в периферических узлах вегетативной нервной. Отростки этого нейрона направляются к органам и тканям в составе органных вегетативных или смешанных нервов. Заканчиваются третьи нейроны на гладких мышцах, железах и в других тканях.

Симпатические ядра находятся в боковых рогах спинного мозга на уровне всех грудных и трех верхних поясничных сегментов.

Ядра парасимпатической нервной системы расположены в среднем, продолговатом мозге и в крестцовом отделе спинного мозга.

Передача нервных импульсов происходит в синапсах, где медиаторами симпатической системы служат, чаще всего, адреналин и ацетилхолин , а парасимпатической системы – ацетилхолин .

Большинство органов иннервируется как симпатическими, так и парасимпатическими волокнами. Однако кровеносные сосуды, потовые железы и мозговой слой надпочечников иннервируется только симпатическими нервами.

Парасимпатические нервные импульсы ослабляют сердечную деятельность, расширяют кровеносные сосуды, снижают давление, снижают уровень глюкозы в крови.

ускоряет и усиливает работу сердца, повышает кровяное давление, суживает сосуды, тормозит работу пищеварительной системы.

Вегетативная нервная система не имеет собственных чувствительных путей. Они являются общими для соматической и вегетативной нервной систем.

Важное значение в регуляции деятельности внутренних органов имеет блуждающий нерв, отходящий от продолговатого мозга и обеспечивающий парасимпатическую иннервацию органов шеи, грудной и брюшной полостей. Импульсы, идущие по этому нерву, замедляют работу сердца, расширяют кровеносные сосуды, усиливают секрецию пищеварительных желез и т.д.

Свойства

Симпатическая

Парасимпатическая

Происхождение нервных волокон

Выходят из черепного, грудного и поясничного отделов ЦНС.

Выходят из черепного и крестцового отделов ЦНС.

Расположение ганглиев

Рядом со спинным мозгом.

Рядом с эффектором.

Длина волокон

Короткие преганглионарные и длинные постганглионарные волокна.

Длинные преганглионарные и короткие постганглионарные волокна.

Число волокон

Многочисленные постганглионарные волокна

Немногочисленные постганглионарные волокна

Распределение волокон

Преганглионарные волокна иннервируют обширные области

Преганглионарные волокна иннервируют ограниченные участки

Зона влияния

Действие генерализованное

Действие местное

Медиатор

Норадреналин

Ацетилхолин

Общие эффекты

Повышает интенсивность обмена

Снижает интенсивность обмена или не влияет на нее

Усиливает ритмические формы активности

Снижает ритмические формы активности

Снижает пороги чувствительности

Восстанавливает пороги чувствительности до нормального уровня

Суммарный эффект

Возбуждающий

Тормозящий

В каких условиях активируется

Доминирует во время опасности, стресса и активности

Доминирует в покое, контролирует обычные физиологические функции

Характер взаимодействия между симпатическим и парасимпатическим отделами нервной системы

1. Каждый из отделов вегетативной нервной системы может оказывать на тот или иной орган возбуждающее или тормозящее действие: под влиянием симпатических нервов учащается сердцебиение, но снижается интенсивность перистальтики кишечника. Под влиянием парасимпатического отдела снижается частота сердечных сокращений, но усиливается активность пищеварительных желез.

2. Если какой-либо орган иннервируется обоими отделами вегетативной нервной системы, то их действие обычно прямо противоположно : симпатический отдел усиливает сокращения сердца, а парасимпатический ослабляет; парасимпатический увеличивает секрецию поджелудочной железы, а симпатический уменьшает. Но есть исключения: секреторными нервами для слюнных желез являются парасимпатические, при этом симпатические нервы не тормозят слюноотделение, а вызывают выделение небольшого количества густой вязкой слюны.

3. К некоторым органам подходят преимущественно либо симпатические , либо парасимпатические нервы: к почкам, селезенке, потовым железам подходят симпатические нервы, а к мочевому пузырю – преимущественно парасимпатические.

4. Деятельность некоторых органов управляется только одним отделом нервной системы – симпатическим : при активации симпатического отдела потоотделение усиливается, а при активации парасимпатического не изменяется, симпатические волокна усиливают сокращение гладких мышц, поднимающих волосы, а парасимпатические не изменяют. Под влиянием симпатического отдела нервной системы может меняться активность некоторых процессов и функций: ускоряется свертывание крови, более интенсивно происходит обмен веществ, повышается психическая активность.

Реакции симпатической нервной системы

Симпатическая нервная система в зависимости от характера и силы раздражений отвечает либо одновременной активацией всех своих отделов, либо рефлекторными ответами отдельных частей . Одновременная активация всей симпатической нервной системы наблюдается чаще всего при активации гипоталамуса (испуг, страх, невыносимая боль). Результат этой обширной реакции, охватывающей все тело, – стресс-реакция. В других случаях рефлекторно и с вовлечением спинного мозга активируются определенные отделы симпатической нервной системы.

Одновременная активация большинства отделов симпатической системы помогает организму производить необычно большую мышечную работу. Этому способствует повышение артериального давления, кровотока в работающих мышцах (с одновременным уменьшением кровотока в желудочно-кишечном тракте и почках), увеличение скорости метаболизма, концентрации глюкозы в плазме крови, расщепления гликогена в печени и мышцах, мышечной силы, умственной работоспособности, скорости свертывания крови. Симпатическая нервная система сильно возбуждается при многих эмоциональных состояниях. В состоянии ярости стимулируется гипоталамус. Сигналы передаются через ретикулярную формацию мозгового ствола в спинной мозг и вызывают массивный симпатический разряд; все вышеупомянутые реакции включаются немедленно. Эту реакцию называют симпатической реакцией тревоги, или реакцией борьбы или бегства, т.к. требуется мгновенное решение – остаться и вступить в бой или бежать.

Примерами рефлексов симпатического отдела нервной системы являются:

– расширение кровеносных сосудов при локальном мышечном сокращении;
– потоотделение при нагревании локального участка кожи.

Видоизмененным симпатическим ганглием является мозговой слой надпочечников. В нем вырабатываются гормоны адреналин и норадреналин, точками приложения которых являются те же органы-мишени, что и для симпатического отдела нервной системы. Действие гормонов мозгового вещества надпочечников более выражено, чем симпатического отдела.

Реакции парасимпатической системы

Парасимпатическая система осуществляет локальный и более специфический контроль функций эффекторных (исполнительных) органов. Например, парасимпатические сердечно-сосудистые рефлексы обычно действуют только на сердце, увеличивая или уменьшая частоту его сокращений. Так же действуют и другие парасимпатические рефлексы, вызывая, например, слюноотделение или секрецию желудочного сока. Рефлекс опорожнения прямой кишки не вызывает каких-либо изменений на значительном протяжении толстой кишки.

Различия во влиянии симпатического и парасимпатического отделов вегетативной нервной системы обусловлены особенностями их организации. Симпатические постганглионарные нейроны обладают обширной зоной иннервации, и поэтому их возбуждение обычно приводит к генерализованным (широкого действия) реакциям. Общий эффект влияния симпатического отдела состоит в торможении деятельности большинства внутренних органов и стимуляции сердечной и скелетных мышц, т.е. в подготовке организма к поведению типа «борьбы» или «бегства». Парасимпатические постганглионарные нейроны находятся в самих органах, иннервируют ограниченные участки, поэтому оказывают местное регулирующее действие. В целом функция парасимпатического отдела состоит в регуляции процессов, обеспечивающих восстановление функций организма после активной деятельности.

Влияние симпатических и парасимпатических нервов на различные органы

Орган или

система

Влияние

парасимпатической

части

симпатической

части

Сосуды головного мозга

Расширение

Расширение

Слюнные железы

Усиление секреции

Снижение секреции

Периферические артериальные сосуды

Расширение

Расширение

Сердечные сокращения

Замедление

Ускорение и усиление

Потоотделение

Уменьшение

Усиление

Желудочно-кишечный тракт

Усиление двигательной активности

Ослабление двигательной активности

Надпочечник

Снижение секреции гормонов

Усиление секреции гормонов

Мочевой пузырь

Сокращение

Расслабление

Тематические задания

А1. Рефлекторная дуга вегетативного рефлекса может начинаться в рецепторах

2) скелетных мышц

3) мышц языка

4) кровеносных сосудов

А2. Центры симпатической нервной системы находятся в

1) промежуточном и среднем мозге

2) спинном мозге

3) продолговатом мозге и мозжечке

4) коре головного мозга

А3. У бегуна после финиша частота пульса замедляется благодаря влиянию

1) соматической нервной системы

2) симпатического отдела ВНС

3) парасимпатического отдела ВНС

4) обоих отделов ВНС

А4. Раздражение симпатических нервных волокон может привести к

1) замедлению процесса пищеварения

2) понижению кровяного давления

3) расширению кровеносных сосудов

4) ослаблению работы сердечной мышцы

А5. Возбуждение от рецепторов мочевого пузыря в ЦНС идет по

1) собственным чувствительным волокнам ВНС

2) собственным двигательным волокнам ЦНС

3) общим чувствительным волокнам

4) общим двигательным волокнам

А6. Сколько нейронов участвует в передаче сигнала от рецепторов желудка в ЦНС и обратно?

А7. В чем заключается приспособительное значение ВНС?

1) вегетативные рефлексы реализуются с высокой скоростью

2) скорость вегетативных рефлексов мала по сравнению с соматическими

3) у вегетативных волокон общие с соматическими волокнами двигательные пути

4) вегетативная нервная система более совершенна, чем центральная

В1. Выберите результаты действия парасимпатической нервной системы

1) замедление работы сердца

2) активизация пищеварения

3) учащение дыхания

4) расширение кровеносных сосудов

5) повышение кровяного давления

6) появление бледности на лице человека

Автономная нервная система, управляющая нашими органами независимо от сознания. Ацетилхолин и норадреналин - основные посредники этой системы и их эффекты. Лекарства, которые имитируют или блокируют действие посредников вегетативной нервной системы.

Рассмотрим теперь структуру и функции вегетативной нервной системы , которая является отдельной частью нервной системы человека и управляет многими непроизвольными функциями организма. Это автономная нервная система, активность которой не контролируется нашим сознанием. Поэтому мы не можем по своему желанию остановить собственное сердце или прекратить процесс переваривания пищи в желудке. Под контролем этой системы находится активность различных желез, сокращение гладких мышц, работа почек, сокращение сердца и многие другие функции. Вегетативная нервная система поддерживает на заданном природой уровне кровяное давление, потоотделение, температуру тела, обменные процессы, деятельность внутренних органов, кровеносных и лимфатических сосудов. Вместе с эндокринной системой , о которой мы будем рассказывать в следующей главе, она регулирует постоянство состава крови, лимфы, тканевой жидкости (внутренней среды ) в организме, управляет обменом веществ и осуществляет взаимодействие отдельных органов в системах органов (дыхания, кровообращения, пищеварения, выделения и размножения).

Вегетативная нервная система состоит из двух отделов: симпатического и парасимпатического, функции которых, как правило, противоположны ().

Затем дорога пошла в гору и, как только это произошло, ваше тело стало выполнять дополнительную работу по преодолению силы земного притяжения. На выполнение этой работы всем участвующим в ней клеткам организма потребовалась дополнительная энергия, поступающая за счет увеличения скорости сгорания энергоемких веществ, которые клетка получает из крови.

В момент, когда клетка стала сжигать больше этих веществ, чем приносит кровь при данной скорости кровотока, она сообщает вегетативной нервной системе о нарушении своего постоянного состава и отклонении от эталонного энергетического состояния. Центральные отделы вегетативной нервной системы при этом формируют управляющее воздействие, приводящее к комплексу изменений для восстановления энергетического голодания: учащению дыхания и сокращений сердца, ускорению распада белков, жиров и углеводов и так далее ().

В результате за счет увеличения количества поступающего в организм кислорода и скорости кровотока, участвующая в работе клетка переходит на новый режим, при котором она отдает больше энергии в условиях повышения физической активности, но и потребляет ее больше ровно настолько, насколько необходимо для поддержания энергетического баланса, обеспечивающего клетке комфортное состояние. Таким образом, можно сделать вывод, что поддержание постоянства внутренней среды клетки (гомеостаз) осуществляется за счет отрицательной обратной связи вегетативной нервной системы. И, хотя она действует автономно, то есть выключение сознания не приводит к прекращению ее работы (вы продолжаете дышать, и сердце бьется ровно), она реагирует на малейшие изменения в работе центральной нервной системы. Ее можно назвать "мудрой напарницей" центральной нервной системы. Оказывается, что умственная и эмоциональная деятельность - это тоже работа, осуществляемая за счет потребления дополнительной энергии клетками головного мозга и других органов.

Для тех, кто хочет детальнее изучить работу вегетативной нервной системы, мы даем ее описание более подробно.

Как мы уже говорили выше, вегетативная нервная система представлена в центральных отделах симпатическими и парасимпатическими ядрами, расположенными в головном и спинном мозге, а на периферии - нервными волокнами и узлами (ганглиями). Нервные волокна, составляющие ветки и веточки этой системы, расходятся по всему телу, сопровождаемые сетью кровеносных сосудов.

В нашем теле все внутренние ткани и органы, "подчиненные" вегетативной нервной системе, снабжены нервами (иннервированы ), которые как датчики собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них доносят до периферии корректирующие воздействия.

Так же как и центральная нервная система, вегетативная система имеет чувствительные (афферентные ) окончания (входы), обеспечивающие возникновение ощущений, и исполнительные (двигательные, или эфферентные ) окончания, которые передают из центра модифицирующие воздействия к исполнительному органу. Физиологически этот процесс выражается в чередовании процессов возбуждения и торможения, в ходе которых происходит передача нервных импульсов, возникающих в клетках нервной системы (нейронах ).

Переход нервного импульса с одного нейрона на другой или с нейронов на клетки исполнительных (эффекторных) органов осуществляется в местах контакта клеточных мембран, называемых синапсами (). Передача информации осуществляется специальными химическими веществами-посредниками (медиаторами ), выделяемыми из нервных окончаний в синаптическую щель . В нервной системе эти вещества называют нейромедиаторами . Основными нейромедиаторами в вегетативной нервной системе являются ацетилхолин и норадреналин . В состоянии покоя эти медиаторы, вырабатываемые в нервных окончаниях, находятся в особых пузырьках.

Попробуем коротко рассмотреть работу этих медиаторов на примере . Условно (так как он занимает считанные доли секунды) весь процесс передачи информации можно разбить на четыре этапа. Как только по пресинаптическому окончанию поступает импульс, на внутренней стороне клеточной мембраны за счет входа ионов натрия происходит образование положительного заряда, и пузырьки с медиатором начинают приближаться к пресинаптической мембране (этап I на ). На втором этапе осуществляется выход медиатора в синаптическую щель из пузырьков в месте их контакта с пресинаптической мембраной. После выделения из нервных окончаний нейромедиатор проходит синаптическую щель путем диффузии и связывается со своими рецепторами постсинаптической мембраны клетки исполнительного органа или другой нервной клетки (этап III). Активация рецепторов запускает в клетке биохимические процессы, приводящие к изменению ее функционального состояния в соответствии с тем, какой сигнал был получен от афферентных звеньев. На уровне органов это проявляется сокращением или расслаблением гладких мышц (сужением или расширением сосудов, учащением или замедлением и усилением или ослаблением сокращений сердца), выделением секрета и так далее. И, наконец, на четвертом этапе происходит возвращение синапса в состояние покоя либо за счет разрушения медиатора ферментами в синаптической щели, либо благодаря транспорту его обратно в пресинаптическое окончание. Сигналом к прекращению выделения медиатора служит возбуждение им рецепторов пресинаптической мембраны.

Холино- и адренорецепторы неоднородны и различаются чувствительностью к некоторым химическим веществам. Так, среди холинорецепторов выделяют мускаринчувствительные (м-холинорецепторы) и никотинчувствительные (н-холинорецепторы) - по названиям естественных алкалоидов , которые оказывают избирательное действие на соответствующие холинорецепторы. Мускариновые холинорецепторы, в свою очередь, могут быть м 1 -, м 2 - и м 3 -типа в зависимости от того, в каких органах или тканях они преобладают. Адренорецепторы, исходя из различной чувствительности их к химическим соединениям, подразделяют на альфа- и бета-адренорецепторы, которые тоже в зависимости от локализации имеют несколько разновидностей.

Сеть нервных волокон пронизывает все человеческое тело, таким образом, холино- и адренорецепторы расположены по всему телу. Нервный импульс, распространяющийся по всей нервной сети или ее пучку, воспринимается как сигнал к действию теми клетками, которые имеют соответствующие рецепторы. И, хотя холинорецепторы локализуются в большей степени в мышцах внутренних органов (желудочно-кишечного тракта, мочеполовой системы, глаз, сердца, бронхиол и других органов), а адренорецепторы - в сердце, сосудах, бронхах, печени, почках и в жировых клетках, обнаружить их можно практически в каждом органе. Воздействия, при реализации которых они служат посредниками, очень разнообразны.

Зная механизм передачи информации в вегетативной нервной системе, можно предположить, как и в каких местах этой передачи нам необходимо действовать, чтобы вызвать определенные эффекты. Для этого мы можем использовать вещества, которые имитируют (миметики) или блокируют (литики) работу нейромедиаторов, угнетают действие ферментов, разрушающих эти медиаторы, или препятствуют высвобождению посредников из пресинаптических пузырьков. Используя такие лекарства, можно оказывать влияние на многие органы: регулировать деятельность сердечной мышцы, желудка, бронхов, стенок сосудов и так далее.

Рассмотрим подробнее эффекты лекарств, влияющих на вегетативную нервную систему.

Они влияют на сердечно-сосудистую систему, глаза, дыхательные пути, желудочно-кишечный тракт, мочеполовую систему, слюнные и потовые железы, на обмен веществ, функции эндокринной системы, центральную нервную систему. Влияние конкретного препарата зависит от его избирательности, активности и совокупности тех реакций организма, которые возмещают нарушения, вызванные действием препарата.

Основными эффектами адреномиметиков являются: повышение артериального давления, увеличение силы и частоты сердечных сокращений, расширение бронхов и зрачков (мидриаз ), снижение внутриглазного давления, повышение уровня глюкозы в крови. Кроме того, адреномиметики оказывают противоотечное действие, вызывают расслабление гладкой мускулатуры желудочно-кишечного тракта и матки.

Выбор препарата для лекарственной терапии зависит от избирательности его действия (то есть от того, какой подкласс рецепторов он возбуждает), желаемой продолжительности эффекта и предпочтительного пути введения. Основными показаниями к применению адреномиметиков являются: гипотензия (фенилэфрин ), шок , в том числе кардиогенный (добутамин ), бронхиальная астма (сальбутамол , тербуталин , фенотерол ), анафилактические реакции (эпинефрин ), предупреждение преждевременных родов (тербуталин), гипертензия (метилдофа , клонидин , гуанфацин ). Эти средства применяют также при состояниях, когда необходимо уменьшить кровоток, например, при местной анестезии и для снижения отека слизистой оболочки. Противоотечные свойства некоторых из них (ксилометазолин , тетризолин , нафазолин ) используют для снижения дискомфорта при "сенной" лихорадке и простудах . С целью облегчения симптомов и проявлений аллергии эти средства часто сочетают с антигистаминными средствами. Чтобы обеспечить местное действие и уменьшить воздействие на организм в целом такие препараты выпускают в форме глазных капель, капель и спрея в нос.

Фенилэфрин, кроме того, может вызвать расширение зрачков, поэтому его часто используют в офтальмологии при исследовании глазного дна; дипивефрин , являющийся аналогом адреналина, и сам адреналин применяют также при лечении глаукомы .

Побочные действия адреномиметиков связаны, в основном, с воздействием на сердечно-сосудистую и центральную нервную системы. К ним относятся значительное повышение артериального давления и усиление работы сердца, которые могут привести к кровоизлиянию в мозг, отеку легких, приступу стенокардии, сердечным аритмиям, повреждению сердечной мышцы (миокарда). Со стороны центральной нервной системы могут наблюдаться двигательное беспокойство, дрожание, бессонница, тревожность; при судорогах, инсультах, аритмиях или инфаркте миокарда может возникнуть ухудшение состояния.

Теперь мы уже знаем, что, возбуждая адренорецепторы, можно добиться эффектов, подобных тем, которые вызывает норадреналин - один из основных медиаторов вегетативной нервной системы. Рассмотрим, что произойдет, если адренорецепторы, напротив, будут заблокированы? Тогда вызываемые норадреналином эффекты тоже заблокируются: кровяное давление снизится, потребность сердечной мышцы в кислороде и проявления аритмии уменьшатся, внутриглазное давление понизится и так далее. Такое ослабление действия называется антагонизмом . Если представить отношения лекарства, норадреналина и рецептора в виде отношений замка и ключей к нему, то можно сказать, что ключ-норадреналин не может войти в замок-рецептор, так как последний занят ключом-лекарством. Через какое-то время этот ключ (лекарство) разрушается или замок меняется (что, кстати, чаще всего и происходит ввиду того, что рецепторы в организме постоянно обновляются) и действие норадреналина восстанавливается.

Лекарства, препятствующие действию норадреналина, оказались чрезвычайно эффективными, в первую очередь, при лечении сердечно-сосудистых заболеваний. Следует заметить, что блокада бета-адренорецепторов, в основном, препятствует действию норадреналина на сердце и бронхи, тогда как блокада альфа-рецепторов - на сосуды. Эти средства, блокирующие рецепторы норадреналина (адренорецепторы), называют антиадренергическими или адреноблокаторами .

Таким образом, антиадренергические средства, "занимают" адренорецепторы и препятствуют их активации норадреналином. Наибольшее применение в медицине нашли лекарства, блокирующие один из видов адренорецепторов - бета-адренорецепторы. Такие средства известны более как бета-адреноблокаторы . При этом большое практическое значение имеет избирательность (селективность) их действия в отношении двух подклассов бета-адренорецепторов - бета 1 и бета 2 в связи с различной локализацией этих рецепторов в организме. Так, бета 1 -адренорецепторы преимущественно обнаруживаются в сердце, а бета 2 -адренорецепторы - в сосудах, бронхах и других тканях.

Одним из первых в медицине стал применяться пропранолол , который зарекомендовал себя как эффективное и безопасное средство при многих заболеваниях. Позже были найдены другие представители бета-адреноблокаторов - атенолол , ацебутолол , бетаксолол , бисопролол , бопиндолол , метопролол , небиволол , пиндолол , соталол , талинолол , тимолол . Ацебутолол, атенолол, бетаксолол, бисопролол и метопролол являются кардиоселективными, то есть блокирующими преимущественно бета 1 -адренорецепторы сердца. Они мало влияют на бронхи и не ухудшают кровоснабжение органов, в том числе сердца.

Основными фармакологическими эффектами бета-адреноблокаторов являются снижение кровяного и внутриглазного давления, уменьшение потребности сердечной мышцы (миокарда) в кислороде, антиаритмическое действие. Еще одним важным свойством некоторых бета-адреноблокаторов является местная обезболивающая или мембраностабилизирующая активность. Она значительно повышает антиаритмическое влияние бета-адреноблокаторов.

Эти эффекты и определяют основной круг показаний к применению бета-адреноблокаторов. В первую очередь это гипертензия , ишемическая болезнь сердца , сердечные аритмии , глаукома , а также гипертиреоидизм , некоторые неврологические заболевания - мигренеподобные головные боли , тремор (непроизвольное дрожание головы, конечностей или всего тела), тревога , алкогольная абстиненция и другие.

При лечении гипертензии (повышенное кровяное давление) бета-адреноблокаторы часто комбинируют с мочегонными средствами (диуретиками) , а для повышения эффективности лечения глаукомы их сочетают с холиномиметиками , имитирующими действие другого медиатора - ацетилхолина, также увеличивающего отток внутриглазной жидкости.

Основные побочные действия бета-адреноблокаторов обусловлены последствиями блокады адренорецепторов. Могут наблюдаться заторможенность, нарушение сна, депрессия. Снижается сократимость и возбудимость сердечной мышцы, что может привести к сердечной недостаточности. Возможно понижение содержания глюкозы в крови. Неселективные бета-адреноблокаторы часто ухудшают течение бронхиальной астмы и других форм закупорки дыхательных путей.

Основным эффектом средств, блокирующих альфа-адренорецепторы, является расширение сосудов, снижение периферического сосудистого сопротивления и кровяного давления. Так же как и бета-адреноблокаторы, они могут отличаться избирательностью действия в отношении определенного подвида альфа-адренорецепторов. Например, альфузозин , доксазозин , тамсулозин , теразозин блокируют преимущественно альфа 1 -адренорецепторы. Другие альфа-адреноблокаторы (фентоламин , алкалоиды спорыньи эрготамин и дигидроэрготамин ) обладают примерно одинаковой активностью в отношении альфа 1 - и альфа 2 -адренорецепторов.

Показаниями к применению альфа-адреноблокаторов являются гипертензия , заболевания периферических сосудов , феохромоцитома (опухоль надпочечника, сопровождающаяся выделением в кровь большого количества адреналина и норадреналина). Кроме того, они могут использоваться при закупорке мочевыводящих путей и при некоторых нарушениях половых функций у мужчин.

Наряду с веществами, блокирующими либо альфа-, либо бета-адренорецепторы, практическое значение имеют вещества, которые одновременно блокируют оба типа адренорецепторов (лабеталол , карведилол ). Эти средства расширяют периферические сосуды и действуют как типичные бета-адреноблокаторы, снижая сердечный выброс и частоту сердечных сокращений. Применяют их при гипертензии , застойной сердечной недостаточности и стенокардии .

К числу препаратов, прерывающих прохождение возбуждения по симпатическим нервам (адренергическим), относятся также вещества, которые препятствуют высвобождению норадреналина в синаптическую щель или вызывают истощение запасов различных нейромедиаторов, в том числе норадреналина , дофамина и серотонина . Эти препараты, помимо снижения кровяного давления, тормозят функции центральной нервной системы.

Типичным представителем таких лекарств (их называют еще симпатолитиками) является резерпин - алкалоид, который получают из корней растения раувольфии змеевидной. Препараты резерпина считаются эффективными и относительно безопасными лекарствами для лечения гипертензии легкой и средней тяжести. Они вызывают постепенное снижение давления в течение 1-2 дней. При этом резерпин может использоваться и в сочетании с другими средствами, снижающими артериальное давление, например, с альфа-адреноблокатором дигидроэргокристином или мочегонным средством клопамид .

Как мы уже обсуждали ранее, ацетилхолин является одним из основных посредников (медиаторов) вегетативной нервной системы. Он участвует в передаче импульса с одной нервной клетки на другую или с нервной клетки на клетку какого-либо другого органа, в частности, скелетной мышцы. С каждым импульсом в просвет (синапс ) между нервными окончаниями или между нервным окончанием и клеткой другого органа выбрасывается несколько миллионов молекул ацетилхолина, которые, связываясь со своими рецепторами, вызывают возбуждение клетки. Это возбуждение всегда проявляется изменением обмена веществ и функций, характерных для данной клетки. Нервная клетка передает импульс, мышечная - сокращается, железистая - выделяет секрет и так далее.

Вещества, которые имитируют эффект ацетилхолина, стимулируя холинорецепторы, обладают сходной с ним активностью. Эти вещества называют холинергическими, или еще холиномиметиками . Так пилокарпин , выделенный из листьев растения пилокарпус, не хуже ацетилхолина сокращает мышцы глаза и улучшает отток внутриглазной жидкости. Препараты, действующим веществом которых является пилокарпин, применяются при лечении повышенного внутриглазного давления , в том числе глаукомы .

Поскольку ацетилхолин отличается разнообразием точек приложения и разнонаправленностью эффектов, большое значение приобретает избирательность действия холинергических средств на холинорецепторы. Как вы уже знаете, существует два основных типа холинорецепторов - мускариновые или м-холинорецепторы и никотиновые или н-холинорецепторы. м-Холинорецепторы локализуются преимущественно в клетках центральной нервной системы, сердце, железах и эндотелии, а н-холинорецепторы - в нервно-мышечных соединениях и нервных узлах (ганглиях). Поэтому фармакологическое действие стимуляторов холинорецепторов определяется их избирательностью, позволяющей достичь желаемых эффектов без побочных действий или же с очень небольшими.

Срок жизни ацетилхолина - несколько тысячных долей секунды, так как он быстро расщепляется особым ферментом - ацетилхолинэстеразой. Представляете, какой мощью должен обладать этот фермент, чтобы за такое ничтожное время разрушить медиатор!

Теперь представим себе, что ацетилхолинэстеразе кто-то мешает, что по какой-то причине она не способна выполнить свою работу. В этих условиях ацетилхолин будет накапливаться и его действие на органы и ткани усиливаться. "Мешают" этому антихолинэстеразные средства - ингибиторы ацетилхолинэстеразы. Их еще называют "непрямыми" холиномиметиками, так как они не сами взаимодействуют с холинорецепторами, а препятствуют расщеплению ацетилхолина. Одно из таких веществ содержится в соке бобов африканского растения физостигма ядовитая, которое местное население именовало "эзере". Ученые, которые выделили это вещество, назвали его физостигмин , но по иронии судьбы вскоре другая группа исследователей тоже выделила действующее вещество из эзере и назвали его эзерин. Так и существуют параллельно эти два названия. Впоследствии были получены многочисленные синтетические гомологи физостигмина-эзерина: неостигмин , прозерин (по латыни "про" - "за", "вместо"), пиридостигмина бромид и другие. Первоначально ингибиторы ацетилхолинэстеразы применяли как антидоты при передозировке миорелаксантов или для снятия их действия. Но у них есть и другие области применения, в том числе тяжелая мышечная слабость (миастения ), глаукома , атония (отсутствие тонуса) желудочно-кишечного тракта и мочевыводящих путей, передозировка атропина и так далее.

Черешня сумасшедших и пьяные огурцы

Есть ли что-то общее между кремом, с помощью которого Маргарита превратилась в ведьму (М.Булгаков, "Мастер и Маргарита"), и пльзеньским пивом? Да. В состав колдовских мазей и напитков с незапамятных времен входили белладонна (красавка, волчья ягода, черешня сумасшедших) и белена, считавшиеся волшебными травами. Алкалоиды (в частности атропин белладонны), содержащиеся в этих растениях, возбуждают центральную нервную систему, вызывают зрительные, слуховые и другие галлюцинации, ощущение полета в пространстве, беспокойство, беспричинный смех. Именно так выглядит человек, про которого мы можем сказать "белены объелся". Что же касается пива, семена белены использовались, например, в Германии, для усиления опьяняющего действия пива. Название "Пльзеньское" и происходит от слова "белзен" - белена. Впоследствии, учитывая большое количество отравлений, было запрещено добавлять белену в пиво.

Таким образом, еще много лет назад люди познакомились с действием атропина - первого представителя широко известного в настоящее время класса фармакологических веществ - антихолинергических (другие названия холиноблокаторы, холинолитики).

Каким же образом эти вещества действуют? Атропин и родственные ему соединения препятствуют связыванию ацетилхолина постсинаптической мембраны клетки, имеющей м-холинорецепторы.

В зависимости от того, в каких органах и тканях находятся м-холинорецепторы, они могут быть трех видов:

м 1 -рецепторы находятся в нервных клетках (головной мозг, периферические нервные сплетения),
м 2 -рецепторы - в сердце,
м 3 -рецепторы - в гладких мышцах глаза, бронхов, желче- и мочевыводящих путей, кишечника, а также клетках желез: потовых, слюнных, бронхиальных, желудочных.

Наличие нескольких модификаций м-холинорецепторов позволяет избирательно влиять на какую-то одну из них и избежать развития ненужных эффектов. Например, снизить тонус гладких мышц, не изменяя деятельности сердца, или расширить зрачки для осмотра глазного дна, не вызывая расслабления кишечника.

Какие же препараты обладают способностью препятствовать действию ацетилхолина на м-холинорецепторы?

Атропин - алкалоид белладонны, дурмана (пьяные огурцы).

Скополамин - алкалоид белены, дурмана, мандрагоры.

Платифиллин - алкалоид крестовника ромболистного.

Эти вещества (и препараты, их содержащие) влияют на все подвиды м-холинорецепторов и поэтому обладают самым широким спектром действия (центральная нервная система, сердце и другие органы). Однако алкалоиды по-разному влияют на центральную нервную систему. Атропин возбуждает центр дыхания, в больших дозах он вызывает галлюцинации, в том числе зрительные (яркие, устрашающие), беспокойство и судороги. Скополамин, напротив, оказывает успокаивающее действие, устраняет рвоту и судороги. Он способен уменьшать двигательные нарушения при болезни Паркинсона . В начале ХХ века широкое распространение получил "болгарский метод" лечения паркинсонизма . Крестьянин Иван Раев, владевший этим методом, не разглашал секрета, и он стал известен только после того, как королева Италии Елена выкупила его за 4 млн. лир. Как оказалось, метод был основан на употреблении винного отвара корней белладонны. Королева Елена учредила ряд госпиталей для больных паркинсонизмом, где благодаря использованию "болгарского метода", до 25% больных излечивались, а у 40% отмечалось значительное улучшение. В настоящее время, целый ряд препаратов, блокирующих м 1 -холинорецепторы центральной нервной системы применяется для лечения как болезни Паркинсона, так и лекарственного паркинсонизма (действующие вещества - бипериден, тригексифенидил). Некоторые из них блокируют и н-холинорецепторы мозга.

Центральные эффекты платифиллина ограничиваются лишь угнетением сосудодвигательного центра, которое приводит к снижению артериального давления.

Действуя при местном применении на м 3 -холинорецепторы, м-холиноблокаторы (м-холинолитики) расслабляют гладкие мышцы глаза. Поэтому расширяется зрачок (исчезает реакция радужной оболочки на свет, развивается светобоязнь) и повышается внутриглазное давление. Карл Линней, назвавший красавку Atropa Belladonnae, знал, что женщины Италии и Испании, вслед за древними римлянками, использовали сок этого растения, чтобы расширить зрачок и придать взгляду таинственный блеск, а лицу особую привлекательность. Кстати, "красивая женщина" по-итальянски звучит "Белла донна", отсюда и название растения - белладонна, а красавка - это просто перевод на русский язык. Однако достичь красоты без жертв невозможно. Бедные женщины часто спотыкались, а актрисы с расширенными зрачками частенько падали со сцены. Это было следствием еще одного воздействия м-холиноблокаторов на глаз - паралича аккомодации. Дело в том, что под влиянием этих препаратов хрусталик становится плоским, и хорошо различимыми остаются только далеко расположенные предметы. Возможно, и надменность прежних красавиц была обусловлена тем, что они просто не видели находящихся рядом людей и не отвечали на их приветствия.

Рассмотрим теперь воздействие на сердце. Если заблокировать его м 2 -холинорецепторы, то ему "не хочется покоя". Когда сердце чаще бьется (тахикардия), увеличивается его потребность в кислороде. Ускоряется проведение импульсов от предсердий к желудочкам и повышается систолическое давление (диастолическое практически не изменяется). Скополамин действует на сердце слабее атропина, а платифиллин - слабее их обоих.

Другим не менее важным эффектом м-холиноблокаторов является способность расслаблять гладкие мышцы бронхов, кишечника, моче- и желчевыводящих путей. Этот эффект получил название "спазмолитический" (спазм - повышенный тонус гладких мышц), а препараты м-холиноблокаторов также называются спазмолитиками. При действии на м 3 -рецепторы уменьшается вход в клетки ионов кальция, поэтому гладкие мышцы расслабляются, и уменьшается выделение секрета. Влияние на секрецию заключается в торможении выработки особого фермента, расщепляющего белки - пепсина и соляной кислоты в желудке. Кроме того, "высыхают" слезы (снижается продукция слезной жидкости). Уменьшается потоотделение и секреция бронхиальных желез, подавляется образование слюны ("сухой рот"). В ряду алкалоидов наиболее выраженным спазмолитическим эффектом обладает платифиллин.

Как уже говорилось ранее, тот факт, что м-холинорецепторы не одинаковы, предполагает возможность получения препаратов, целенаправленно влияющих на тот или иной их подтип. Реализация этой возможности, например, не лишает больного язвенной болезнью способности заплакать, или страдающего бронхиальной астмой, не спотыкаясь, ходить и видеть окружающих, в том числе и своего врача.

Синтетические м-холиноблокаторы плохо проникают в мозг, поэтому практически лишены центральных эффектов. К их числу относятся: метоциния йодид (он сильнее атропина подавляет секрецию желез и расслабляет гладкие мышцы внутренних органов, но слабее влияет на глаз и сердце), ипратропия бромид и тровентол (в условиях ингаляционного применения они влияют только на м 3 -рецепторы бронхов, вызывая их расширение).

Пирензепин избирательно блокирует м 1 -рецепторы нервных сплетений желудка (уменьшает секрецию), поэтому он не только не влияет на центральную нервную систему, глаз, сердце, но и не изменяет моторики и секреции других отделов желудочно-кишечного тракта.

Таким образом, м-холиноблокаторы влияют на многие системы организма. Когда же их назначают? Их назначают в тех случаях, когда имеются:

1. Почечная и печеночная колики , холецистит

Но недаром родоначальник группы м-холиноблокаторов получил свое название по имени одной из богинь судьбы. Мойра Атропос - самая страшная из богинь - именно она перерезает нить жизни человека. И отравления м-холиноблокаторами очень опасны. Для них особенно характерно стойкое расширение зрачков и повышение температуры тела, угнетение центральной нервной системы (потеря сознания, отсутствие рефлексов, угнетение центра дыхания). При отравлении атропином угнетению центральной нервной системы предшествует стадия возбуждения (галлюцинации, бред, судороги, одышка). Все явления развиваются на фоне гиперемии кожи лица, шеи и груди, сухости кожи и слизистых оболочек, в том числе рта, с развитием афонии (отсутствие голоса), тахикардии, аритмии ("скачущий" пульс), задерживается мочеиспускание и дефекация.

Отравление атропином очень похоже на обострение психоза и ряд лихорадок. Помочь больному можно только в условиях стационара.

н-Холиноблокаторы, или ганглиоблокаторы , блокируют никотинчувствительные холинорецепторы в нервных узлах (ганглиях, отсюда и название - ганглиоблокаторы) вегетативной нервной системы. Что это за узлы? В передаче нервного импульса обычно участвуют несколько нейронов. Исполнительные вегетативные волокна прерываются в ганглиях (возбуждение передается ацетилхолином за счет активации н-холинорецепторов постсинаптической мембраны). Здесь заканчиваются преганглионарные волокна, идущие от головного и спинного мозга и берут начало вегетативные сплетения (постганглионарные), заканчивающиеся в различных органах.

н-Холиноблокаторы, или ганглиоблокаторы, не обладают избирательностью действия и для них характерен широкий спектр эффектов. Поэтому они находят лишь ограниченное применение в медицинской практике, когда необходимо кратковременное снижение кровяного давления, в частности, в нейрохирургии.

Но есть и другая группа н-холиноблокаторов, действующая на н-холинорецепторы не в нервных узлах, а в местах контакта нервных окончаний со скелетно-мышечной мускулатурой. Представим себе, что что-то мешает ацетилхолину соединиться со своим рецептором в месте контакта нервной и мышечной клеток. Что при этом произойдет? Мышца перестанет сокращаться, она расслабится. Нет приказа, нет и работы. Так действует один из сильнейших ядов - кураре, который, попадая в организм, вызывает полный паралич мышц, в том числе дыхательных, и смерть. Смерть тихую, без судорог и стонов. Сначала расслабляются мышцы шеи, конечностей, затем паралич распространяется по всему телу и захватывает грудную клетку и диафрагму - дыхание останавливается. Выделение и изучение свойств действующего вещества этого яда - тубокурарина - позволило ученым создать на его основе лекарства, снижающие тонус скелетной мускулатуры (так называемые миорелаксанты ), применяемые для полного расслабления мускулатуры при проведении операций. Различающиеся по механизму действия и длительности эффекта они используются не только в хирургической практике, но и для лечения заболеваний, при которых повышается тонус скелетных мышц.

В процессе филогенеза выделилась эффективная система контроля, управляющая функциями отдельных органов в усложняющихся условиях жизни и позволяющая быстро адаптироваться к изменениям окружающей среды. Эта управляющая система состоит из центральной нервной системы (ЦНС) (головной мозг+спинной мозг) и двух отдельных механизмов двусторонней связи с периферическими органами, которые называются соматическая и вегетативная нервная система.

Соматическая нервная система включает в себя экстра- и интрацептивную афферентную иннервацию, специальные чувствительные структуры и моторную эфферентную иннервацию, нейроны, которые необходимы для получения информации о положении в пространстве и координации точных движений тела (восприятие чувства: угроза => ответ: бегство или нападение). Вегетативная нервная система (ВНС) вместе с эндокринной системой контролирует внутреннюю среду организма. Она подстраивает внутренние функции организма к изменяющимся потребностям.

Нервная система позволяет организму очень быстро адаптироваться , тогда как эндокринная система осуществляет длительную регуляцию функций организма. (ВНС ) функционирует в основном безучастия сознания: она действует автономно. Ее центральные структуры находятся в гипоталамусе, стволе мозга и спинном мозге. ВНС также участвует в регуляции эндокринных функций.

Вегетативная нервная система (ВНС ) имеет симпатический и парасимпатический отделы. Оба состоят из центробежных (эфферентных) и центростремительных (афферентных) нервов. Во многих органах, иннервированных обеими ветвями, активация симпатической и парасимпатической систем вызывает противоположные реакции.

При ряде заболеваний (нарушениях функций органов) лекарственные средства используются с целью нормализовать функцию этих органов. Для понимания биологических эффектов веществ, ингибирующих или возбуждающих симпатические либо парасимпатические нервы, сначала необходимо рассмотреть функции, которые контролируются симпатическим и парасимпатическим отделами.

Выражаясь простым языком , активацию симпатического отдела можно считать средством, с помощью которого организм достигает состояния максимальной работоспособности, необходимой в ситуациях с нападением или бегством.

В обоих случаях требуется огромная работа скелетной мускулатуры . Чтобы гарантировать адекватное поступление кислорода и питательных веществ, увеличивается кровоток в скелетной мускулатуре, ЧСС и сократимость миокарда, что приводит к повышению объема крови, поступающего в общий кровоток. Сужение кровеносных сосудов внутренних органов направляет кровь в мышечные сосуды.

Поскольку переваривание пищи в ЖКТ можно приостановить и, по сути, оно мешает адаптации к стрессу, движение пищевого комка в кишке замедляется до такой степени, что перистальтика становится минимальной и сужаются сфинктеры. Более того, для увеличения снабжения питательными веществами сердца и мышц в кровь должны высвобождаться глюкоза из печени и свободные жирные кислоты из жировой ткани. Бронхи расширяются, увеличивая дыхательный объем и захват кислорода альвеолами.

Потовые железы тоже иннервируются симпатическими волокнами (влажные ладони при волнении); однако окончания симпатических волокон в потовых железах являются холинергическими, т. к. в них вырабатывается исключительно нейромедиатор ацетилхолин (АХ).

Образ жизни современного человека отличается от образа жизни наших предков (человекообразных обезьян), но биологические функции остались прежними: вызванное стрессом состояние максимальной работоспособности, но без мышечной работы с потреблением энергии. Различные биологические функции симпатической нервной системы реализуются за счет разных рецепторов в плазматической мембране внутри клеток-мишеней. Эти рецепторы подробно описываются далее. Для облегчения понимания последующего материала подтипы рецепторов, участвующих в симпатических реакциях, перечислены на рисунке ниже (α1, α2, β1, β2, β3).

Под вегетативной (от лат. vegetare – расти) деятельностью организма понимают работу внутренних органов, которая обеспечивает энергией и прочими необходимыми для существования компонентами все органы и ткани. В конце XIX века французский физиолог Клод Бернар (Bernard C.) пришёл к выводу, что "постоянство внутренней среды организма – залог его свободной и независимой жизни". Как отмечал он ещё в 1878 году, внутренняя среда организма подчиняется строгому контролю, удерживающему её параметры в определённых рамках. В 1929 году американский физиолог Уолтер Кэннон (Cannon W.) предложил обозначать относительное постоянство внутренней среды организма и некоторых физиологических функций термином гомеостаз (греч. homoios – равный и stasis – состояние). Есть два механизма сохранения гомеостаза: нервный и эндокринный. В этой главе будет рассмотрен первый из них.

11.1. Вегетативная нервная система

Вегетативная нервная система иннервирует гладкие мышцы внутренних органов, сердце и внешнесекреторные железы (пищеварительные, потовые и т. д.). Иногда эту часть нервной системы называют висцеральной (от лат. viscera – внутренности) и очень часто – автономной. Последнее определение подчёркивает важную особенность вегетативной регуляции: она происходит лишь рефлекторно, т. е. не осознаётся и не подчиняется произвольному контролю, тем самым принципиально отличаясь от соматической нервной системы, иннервирующей скелетные мышцы. В англоязычной литературе как правило используется термин автономная нервная система, в отечественной её чаще называют вегетативной.

В самом конце XIX века британский физиолог Джон Лэнгли (Langley J.) подразделил вегетативную нервную систему на три отдела: симпатический, парасимпатический и энтеральный. Эта классификация остаётся общепризнанной и в настоящее время (хотя в отечественной литературе энтеральный отдел, состоящий из нейронов межмышечного и подслизистого сплетений желудочно-кишечного тракта, довольно часто называют метасимпатическим). В этой главе рассматриваются первые два отдела вегетативной нервной системы. Кэннон обратил внимание на их разные функции: симпатический управляет реакциями борьбы или бегства (в английском рифмующемся варианте: fight or flight), а парасимпатический необходим для покоя и усвоения пищи (rest and digest). Швейцарский физиолог Вальтер Хесс (Hess W.) предложил называть симпатический отдел эрготропным, т. е. способствующим мобилизации энергии, интенсивной деятельности, а парасимпатический – трофотропным, т. е. регулирующим питание тканей, восстановительные процессы.

11.2. Периферический отдел вегетативной нервной системы

Прежде всего необходимо отметить, что периферический отдел вегетативной нервной системы является исключительно эфферентным, он служит только для проведения возбуждения к эффекторам. Если в соматической нервной системе для этого нужен всего лишь один нейрон (мотонейрон), то в вегетативной используются два нейрона, соединяющиеся через синапс в специальном вегетативном ганглии (Рис. 11.1).

Тела преганглионарных нейронов расположены в стволе мозга и спинном мозгу, а их аксоны направляются к ганглиям, где находятся тела постганглионарных нейронов. Рабочие органы иннервируются аксонами постганглионарных нейронов.

Симпатический и парасимпатический отделы вегетативной нервной системы отличаются прежде всего местом нахождения преганглионарных нейронов. Тела симпатических нейронов расположены в боковых рогах грудного и поясничного (два-три верхних сегмента) отделов. Преганглионарные нейроны парасимпатического отдела находятся, во-первых, в стволе мозга, откуда аксоны этих нейронов выходят в составе четырёх черепно-мозговых нервов: глазодвигательного (III), лицевого (VII), языкоглоточного (IX) и блуждающего (Х). Во-вторых, парасимпатические преганглионарные нейроны содержатся в крестцовом отделе спинного мозга (Рис. 11.2).

Симпатические ганглии принято подразделять на два типа: паравертебральные и превертебральные. Паравертебральные ганглии образуют т.н. симпатические стволы, состоящие из соединённых продольными волокнами узлов, которые располагаются по обе стороны от позвоночника на протяжении от основания черепа до крестца. В симпатическом стволе большинство аксонов преганглионарных нейронов передают возбуждение постганглионарным нейронам. Меньшая часть преганглионарных аксонов проходит через симпатический ствол к превертебральным ганглиям: шейным, звёздчатому, чревному, верхнему и нижнему брыжеечным – в этих непарных образованиях так же, как и в симпатическом стволе, находятся симпатические постганглионарные нейроны. Кроме того, часть симпатических преганглионарных волокон иннервирует мозговое вещество надпочечников. Аксоны преганглионарных нейронов тонкие и, несмотря на то, что многие из них покрыты миелиновой оболочкой, скорость проведения возбуждения по ним значительно меньше, чем по аксонам мотонейронов.

В ганглиях волокна преганглионарных аксонов ветвятся и образуют синапсы с дендритами многих постганглионарных нейронов (явление дивергенции), которые, как правило, мультиполярны и имеют в среднем около десятка дендритов. На один преганглионарный симпатический нейрон приходится в среднем около 100 постганглионарных нейронов. Вместе с тем, в симпатических ганглиях наблюдаются и конвергенция многих преганглионарных нейронов к одним и тем же постганглионарным. Благодаря этому происходит суммация возбуждения, а значит повышается надёжность передачи сигнала. Большинство симпатических ганглиев располагается достаточно далеко от иннервируемых органов и поэтому у постганглионарных нейронов довольно длинные аксоны, которые лишены миелинового покрытия.

В парасимпатическом отделе преганглионарные нейроны имеют длинные волокна, часть которых миелинизирована: они оканчиваются вблизи иннервируемых органов или в самих органах, где и находятся парасимпатические ганглии. Поэтому у постганглионарных нейронов аксоны оказываются короткими. Соотношение пре- и постганглионарных нейронов в парасимпатических ганглиях отличается от симпатических: оно составляет здесь лишь 1: 2. Большинство внутренних органов имеет как симпатическую, так и парасимпатическую иннервацию, важное исключение из этого правила составляют гладкие мышцы кровеносных сосудов, которые регулируются только симпатическим отделом. И лишь артерии половых органов имеют двойную иннервацию: и симпатическую, и парасимпатическую.

11.3. Тонус вегетативных нервов

Многие вегетативные нейроны обнаруживают фоновую спонтанную активность, т. е. способность самопроизвольно генерировать потенциалы действия в условиях покоя. Это означает, что иннервируемые ими органы при отсутствии какого-либо раздражения из внешней или внутренней среды всё равно получают возбуждение, обычно с частотой от 0,1 до 4 импульсов в секунду. Такая низкочастотная стимуляция по-видимому поддерживает постоянное небольшое сокращение (тонус) гладких мышц.

После перерезки или фармакологической блокады определённых вегетативных нервов иннервируемые органы лишаются их тонического влияния и такая утрата сразу же обнаруживается. Так, например, после односторонней перерезки симпатического нерва, контролирующего сосуды уха кролика, обнаруживается резкое расширение этих сосудов, а после перерезки или блокады блуждающих нервов у экспериментального животного учащаются сокращения сердца. Снятие блокады восстанавливает нормальную частоту сокращений сердца. После перерезки нервов частоту сокращений сердца и сосудистый тонус можно восстановить, если искусственно раздражать периферические отрезки электрическим током, подобрав его параметры так, чтобы они были близки к естественному ритму импульсации.

В результате различных влияний на вегетативные центры (что ещё предстоит рассмотреть в этой главе) их тонус может изменяться. Так, например, если по симпатическим нервам, контролирующим гладкие мышцы артерий, проходит 2 импульса в секунду, то ширина артерий типична для состояния покоя и тогда регистрируется нормальное артериальное давление. Если тонус симпатических нервов повысится и частота поступающих к артериям нервных импульсов увеличится, например до 4-6 в секунду, то гладкие мышцы сосудов будут сокращаться сильнее, просвет сосудов уменьшится, а артериальное давление возрастёт. И наоборот: при снижении симпатического тонуса частота поступающих к артериям импульсов становится меньше обычного, что приводит к расширению сосудов и понижению артериального давления.

Тонус вегетативных нервов имеет исключительно важное значение в регуляции деятельности внутренних органов. Он поддерживается благодаря поступлению к центрам афферентных сигналов, действию на них различных компонентов ликвора и крови, а также координирующему влиянию ряда структур головного мозга, в первую очередь – гипоталамуса.

11.4. Афферентное звено вегетативных рефлексов

Вегетативные реакции можно наблюдать при раздражении почти любой рецептивной области, но чаще всего они возникают в связи со сдвигами различных параметров внутренней среды и активацией интерорецепторов. Так, например, активация механорецепторов, находящихся в стенках полых внутренних органов (кровеносные сосуды, пищеварительный тракт, мочевой пузырь и т. д.) происходит при изменении в этих органах давления или объёма. Возбуждение хеморецепторов аорты и сонных артерий происходит вследствие повышения в артериальной крови напряжения углекислого газа или концентрации ионов водорода, а также при понижении напряжения кислорода. Осморецепторы активируются в зависимости от концентрации солей в крови или в ликворе, глюкорецепторы – в зависимости от концентрации глюкозы – любое изменение параметров внутренней среды вызывает раздражение соответствующих рецепторов и рефлекторную реакцию, направленную на сохранение гомеостаза. Во внутренних органах есть и болевые рецепторы, которые могут возбуждаться при сильном растяжении или сокращении стенок этих органов, при их кислородном голодании, при воспалении.

Интерорецепторы могут принадлежать одному из двух типов чувствительных нейронов. Во-первых, они могут быть чувствительными окончаниями нейронов спинальных ганглиев, и тогда возбуждение от рецепторов проводится, как обычно, в спинной мозг и затем, с помощью вставочных клеток, к соответствующим симпатическим и парасимпатическим нейронам. Переключения возбуждения с чувствительных на вставочные, а затем и эфферентные нейроны часто происходит в определённых сегментах спинного мозга. При сегментарной организации деятельность внутренних органов контролируют вегетативные нейроны, находящиеся в тех же самых сегментах спинного мозга, к которым поступает афферентная информация от этих органов.

Во-вторых, распространение сигналов от интерорецепторов может осуществляться по чувствительным волокнам, входящим в состав самих вегетативных нервов. Так, например, большая часть волокон, образующих блуждающий, языкоглоточный, чревный нервы, принадлежит не вегетативным, а чувствительным нейронам, тела которых находятся в соответствующих ганглиях.

11.5. Характер симпатического и парасимпатического влияния на деятельность внутренних органов

Большинство органов имеют двойную, т. е. симпатическую и парасимпатическую иннервацию. Тонус каждого из этих отделов вегетативной нервной системы может быть уравновешен влиянием другого отдела, но при определённых ситуациях обнаруживается повышенная активность, преобладание одного из них и тогда проявляется подлинный характер влияния этого отдела. Такое изолированное действие можно обнаружить и в экспериментах с перерезкой или фармакологической блокадой симпатических или парасимпатических нервов. После такого вмешательства деятельность рабочих органов изменяется под влиянием сохранившего с ним связь отдела вегетативной нервной системы. Другой способ экспериментального изучения состоит в поочерёдном раздражении симпатических и парасимпатических нервов специально подобранными параметрами электрического тока – этим моделируется повышение симпатического или парасимпатического тонуса.

Влияние двух отделов вегетативной нервной системы на управляемые органы чаще всего противоположно по направленности сдвигов, что даже даёт повод говорить об антагонистическом характере отношений симпатического и парасимпатического отделов. Так, например, при активации симпатических нервов, управляющих работой сердца, происходит увеличение частоты и силы его сокращений, растёт возбудимость клеток проводящей системы сердца, а при повышении тонуса блуждающих нервов регистрируются противоположные сдвиги: частота и сила сердечных сокращений уменьшаются, возбудимость элементов проводящей системы снижается. Другие примеры противоположного влияния симпатических и парасимпатических нервов можно видеть в таблице11.1

Несмотря на то, что влияние симпатического и парасимпатического отделов на многие органы оказывается противоположным, они действуют как синергисты, т. е. содружественно. При повышении тонуса одного из этих отделов синхронно снижается тонус другого: это означает, что физиологические сдвиги любой направленности обусловлены согласованными изменениями активности обоих отделов.

11.6. Передача возбуждения в синапсах вегетативной нервной системы

В вегетативных ганглиях и симпатического, и парасимпатического отделов медиатором является одно и то же вещество – ацетилхолин (Рис. 11.3). Этот же медиатор служит химическим посредником для передачи возбуждения от парасимпатических постганглионарных нейронов к рабочим органам. Основным медиатором симпатических постганглионарных нейронов является норадреналин.

Хотя в вегетативных ганглиях и в передаче возбуждения от парасимпатических постганглионарных нейронов на рабочие органы используется один и тот же медиатор, взаимодействующие с ним холинорецепторы не одинаковы. В вегетативных ганглиях с медиатором взаимодействуют никотин-чувствительные или Н-холинорецепторы. Если в эксперименте смочить клетки вегетативных ганглиев 0,5% раствором никотина, то они перестают проводить возбуждение. К такому же результату приводит введение раствора никотина в кровь экспериментальных животных и создание, тем самым, высокой концентрации этого вещества. В малой же концентрации никотин действует подобно ацетилхолину, т. е. возбуждает этот тип холинорецепторов. Такие рецепторы связаны с ионотропными каналами и при их возбуждении открываются натриевые каналы постсинаптической мембраны.

Холинорецепторы, находящиеся в рабочих органах и взаимодействующие с ацетилхолином постганглионарных нейронов, принадлежат к другому типу: они не реагируют на никотин, зато их можно возбудить малым количеством другого алкалоида – мускарина или блокировать высокой концентрацией этого же вещества. Мускарин-чувствительные или М-холинорецепторы обеспечивают метаботропное управление, в котором участвуют вторичные посредники, а вызываемые действием медиатора реакции развиваются медленнее и сохраняются дольше, чем при ионотропном управлении.

Медиатор симпатических постганглионарных нейронов норадреналин может связываться метаботропными адренорецепторами двух типов: a- или b, соотношение которых в разных органах не одинаково, что и определяет различные физиологические реакции на действие норадреналина. Например, в гладких мышцах бронхов преобладают b-адренорецепторы: действие медиатора на них сопровождается расслаблением мышц, что ведёт к расширению бронхов. В гладких мышцах артерий внутренних органов и кожи больше a-адренорецепторов и здесь мышцы под действием норадреналина сокращаются, что ведёт к сужению этих сосудов. Секрецию потовых желёз контролируют особые, холинэргические симпатические нейроны, медиатором которых является ацетилхолин. Есть сведения и о том, что артерии скелетных мышц тоже иннервируют симпатические холинэргические нейроны. Согласно другой точке зрения артерии скелетных мышц управляются адренэргическими нейронами, причём норадреналин действует на них через a-адренорецепторы. А тот факт, что при мышечной работе, всегда сопровождающейся повышением симпатической активности, артерии скелетных мышц расширяются, объясняют действием гормона мозгового вещества надпочечников адреналина на b-адренорецепторы

При симпатической активации адреналин в больших количествах выделяется из мозгового вещества надпочечников (следует обратить внимание на иннервацию мозгового вещества надпочечников симпатическими преганглионарными нейронами), и тоже взаимодействует с адренорецепторами. Это усиливает симпатическую реакцию, поскольку кровь приносит адреналин и к тем клеткам, вблизи которых нет окончаний симпатических нейронов. Норадреналин и адреналин стимулируют расщепление гликогена в печени и липидов в жировой ткани, действуя там на b-адренорецепторы. В сердечной мышце b-рецепторы намного чувствительнее к норадреналину, чем к адреналину, тогда как в сосудах и бронхах их легче активирует адреналин. Эти различия послужили основанием для разделения b-рецепторов на два типа: b1 (в сердце) и b2 (в других органах).

Медиаторы вегетативной нервной системы могут действовать не только на постсинаптическую, но и на пресинаптическую мембрану, где тоже имеются соответствующие рецепторы. Пресинаптические рецепторы используются для регуляции количества выделяемого медиатора. Например, при повышенной концентрации норадреналина в синаптической щели он действует на пресинаптические a-рецепторы, что приводит к уменьшению его дальнейшего выделения из пресинаптического окончания (отрицательная обратная связь). Если же концентрация медиатора в синаптической щели становится низкой, с ним взаимодействуют преимущественно b-рецепторы пресинаптической мембраны, а это ведёт к повышению выделения норадреналина (положительная обратная связь).

По такому же принципу, т. е. с участием пресинаптических рецепторов, осуществляется регуляция выделения ацетилхолина. Если окончания симпатических и парасимпатических постганглионарных нейронов оказываются поблизости друг от друга, то возможно реципрокное влияние их медиаторов. Например, пресинаптические окончания холинэргических нейронов содержат a-адренорецепторы и, если на них подействует норадреналин, то выделение ацетилхолина уменьшится. Таким же образом ацетилхолин может уменьшать выделение норадреналина, если присоединится к М-холинорецепторам адренэргического нейрона. Таким образом, симпатический и парасимпатический отделы конкурируют даже на уровне постганглионарных нейронов.

Очень многие лекарственные препараты действуют на передачу возбуждения в вегетативных ганглиях (ганглиоблокаторы, a-адреноблокаторы, b-блокаторы и т. д.) и поэтому широко применяются в медицинской практике для коррекции различного рода нарушений вегетативной регуляции.

11.7. Центры вегетативной регуляции спинного мозга и ствола

Многие преганглионарные и постганглионарные нейроны способны активироваться независимо друг от друга. Например, одни симпатические нейроны управляют потоотделением, а другие – кожным кровотоком, секрецию слюнных желёз повышают одни парасимпатические нейроны, а секрецию железистых клеток желудка – другие. Существуют такие методы обнаружения активности постганглионарных нейронов, которые позволяют отличить сосудосуживающие нейроны кожи от холинэргических нейронов, управляющих сосудами скелетных мышц или от нейронов, действующих на волосковые мышцы кожи.

Топографически организованный вход афферентных волокон от разных рецептивных областей к определённым сегментам спинного мозга или разным областям ствола возбуждает вставочные нейроны, а они передают возбуждение преганглионарным вегетативным нейронам, замыкая таким образом рефлекторную дугу. Наряду с этим для вегетативной нервной системы характерна интегративная деятельность, которая особенно выражена в симпатическом отделе. При определённых обстоятельствах, например, при переживании эмоций может повышаться активность всего симпатического отдела, а соответственно этому снижается активность парасимпатических нейронов. Кроме того, активность вегетативных нейронов согласуется с деятельностью мотонейронов, от которых зависит работа скелетных мышц, но их снабжение необходимыми для работы глюкозой и кислородом осуществляется под контролем вегетативной нервной системы. Участие вегетативных нейронов в интегративной деятельности обеспечивают вегетативные центры спинного мозга и ствола.

В грудном и поясничном отделах спинного мозга находятся тела симпатических преганглионарных нейронов, которые образуют промежуточно-боковое, вставочное и небольшое центрально-вегетативное ядра. Симпатические нейроны, контролирующие потовые железы, сосуды кожи и скелетных мышц располагаются латерально по отношению к нейронам, регулирующим деятельность внутренних органов. По такому же принципу расположены в крестцовом отделе спинного мозга парасимпатические нейроны: латерально – иннервирующие мочевой пузырь, медиально – толстый кишечник. После отделения спинного мозга от головного вегетативные нейроны способны ритмически разряжаться: например, симпатические нейроны двенадцати сегментов спинного мозга, объединённые внутриспинальными проводящими путями, могут, в определённой степени, рефлекторно регулировать тонус кровеносных сосудов. Однако у спинальных животных число разряжающихся симпатических нейронов и частота разрядов оказываются меньше, чем у интактных. Это значит, что контролирующие тонус сосудов нейроны спинного мозга стимулируются не только афферентным входом, но и центрами головного мозга.

В стволе мозга находятся сосудодвигательный и дыхательный центры, которые ритмически активируют симпатические ядра спинного мозга. К стволу непрерывно поступает афферентная информация от баро- и хеморецепторов и в соответствии с её характером вегетативные центры определяют изменения тонуса не только симпатических, но и парасимпатических нервов, контролирующих, например, работу сердца. Это рефлекторная регуляция, в которую вовлекаются и мотонейроны дыхательных мышц – они ритмически активируются дыхательным центром.

В ретикулярной формации мозгового ствола, где расположены вегетативные центры, используется несколько медиаторных систем, осуществляющих контроль важнейших гомеостатических показателей и находящихся в сложных отношениях между собой. Здесь одни группы нейронов могут стимулировать деятельность других, тормозить активность третьих и одновременно испытывать влияние и тех, и других на себе. Наряду с центрами регуляции кровообращения и дыхания здесь находятся нейроны, координирующие многие пищеварительные рефлексы: слюноотделение и глотание, выделение желудочного сока, моторику желудка; отдельно можно упомянуть защитный рвотный рефлекс. Разные центры постоянно координируют свою деятельность друг с другом: например, при глотании рефлекторно закрывается вход в дыхательные пути и, благодаря этому, предупреждается вдох. Активность стволовых центров подчиняет себе деятельность вегетативных нейронов спинного мозга.

11. 8. Роль гипоталамуса в регуляции вегетативных функций

На гипоталамус приходится менее 1% объёма мозга, однако он играет решающую роль в регуляции вегетативных функций. Это объясняется несколькими обстоятельствами. Во-первых, гипоталамус оперативно получает информацию от интерорецепторов, сигналы от которых поступают к нему через ствол мозга. Во-вторых, сюда приходит информация от поверхности тела и от ряда специализированных сенсорных систем (зрительная, обонятельная, слуховая). В-третьих, некоторые нейроны гипоталамуса имеют собственные осмо-, термо- и глюкорецепторы (такие рецепторы называются центральными). Они могут реагировать на сдвиги осмотического давления, температуры и уровня глюкозы в ликворе и крови. В связи с этим следует напомнить, что в гипоталамусе меньше, по сравнению с остальным мозгом, проявляются свойства гематоэнцефалического барьера. В-четвёртых, гипоталамус имеет двусторонние связи с лимбической системой мозга, ретикулярной формацией и корой больших полушарий, что позволяет ему координировать вегетативные функции с определённым поведением, например, с переживанием эмоций. В-пятых, гипоталамус образует проекции на вегетативные центры ствола и спинного мозга, что позволяет ему осуществлять прямой контроль деятельности этих центров. В-шестых, гипоталамус контролирует важнейшие механизмы эндокринной регуляции (См. главу 12).

Важнейшие для вегетативной регуляции переключения осуществляют нейроны ядер гипоталамуса (Рис. 11.4), в разных классификациях их насчитывают от 16 до 48. В 40-х годах ХХ века Вальтер Хесс (Hess W.) через введённые с помощью стереотаксической техники электроды последовательно раздражал разные области гипоталамуса у экспериментальных животных и обнаружил при этом разные комбинации вегетативных и поведенческих реакций.

При стимуляции задней области гипоталамуса и прилегающего к водопроводу серого вещества у подопытных животных повышалось кровяное давление, увеличивалась частота сокращений сердца, учащалось и углублялось дыхание, расширялись зрачки, а также поднималась шерсть, изгибалась горбом спина и оскаливались зубы, т. е. вегетативные сдвиги говорили об активации симпатического отдела, а поведение было аффективно-оборонительным. Раздражение ростральных отделов гипоталамуса и преоптической области вызывало у тех же животных пищевое поведение: они начинали есть, даже если были досыта накормлены, при этом увеличивалось выделение слюны и усиливалась моторика желудка и кишечника, а частота сердечных сокращений и дыхания уменьшалась, становился меньшим и мышечный кровоток, что вполне характерно для повышения парасимпатического тонуса. Одну область гипоталамуса с лёгкой руки Хесса стали называть эрготропной, а другую – трофотропной; их отделяет друг от друга каких-нибудь 2-3 мм.

Из этих и многих других исследований постепенно сложилось представление о том, что активация разных областей гипоталамуса запускает уже предуготованный комплекс поведенческих и вегетативных реакций, а значит роль гипоталамуса состоит в том, чтобы оценить поступающую к нему из разных источников информацию и на её основе выбрать тот или иной вариант, объединяющий поведение с определённой активностью обоих отделов вегетативной нервной системы. Само же поведение можно в этой ситуации рассматривать как деятельность, направленную на предупреждение возможных сдвигов внутренней среды. Следует обратить внимание, что не только уже произошедшие отклонения гомеостаза, но и любое потенциально угрожающее гомеостазу событие может активировать необходимую деятельность гипоталамуса. Так, например, при внезапной угрозе вегетативные сдвиги у человека (увеличение частоты сокращений сердца, повышение кровяного давления и т. п.) происходят быстрее, чем он обратится в бегство, .т.е. такие сдвиги уже учитывают характер последующей мышечной активности.

Непосредственный контроль тонуса вегетативных центров, а значит и выходной активности вегетативной нервной системы, гипоталамус осуществляет с помощью эфферентных связей с тремя важнейшими областями (Рис. 11.5):

1). Ядро солитарного тракта в верхнем отделе продолговатого мозга, которое является главным адресатом сенсорной информации от внутренних органов. Оно взаимодействует с ядром блуждающего нерва и других парасимпатических нейронов и участвует в контроле температуры, кровообращения и дыхания. 2). Ростральная вентральная область продолговатого мозга, имеющая решающее значение в повышении общей выходной активности симпатического отдела. Эта активность проявляется в повышении кровяного давления, увеличении частоты сокращений сердца, секреции потовых желёз, расширении зрачков и сокращении мышц, поднимающих волосы. 3). Вегетативные нейроны спинного мозга, на которые гипоталамус может оказывать прямое влияние.

11.9. Вегетативные механизмы регуляции кровообращения

В замкнутой сети кровеносных сосудов и сердца (Рис. 11.6) постоянно движется кровь, объём которой составляет в среднем 69 мл/кг массы тела у взрослых мужчин и 65 мл/кг массы тела у женщин (т.е. при массе тела 70 кг он составит соответственно 4830 мл и 4550 мл). В состоянии покоя от 1/3 до 1/2 этого объёма не циркулирует по сосудам, а находится в кровяных депо: капиллярах и венах брюшной полости, печени, селезёнки, лёгких, подкожных сосудов.

При физической работе, эмоциональных реакциях, стрессе эта кровь переходит из депо в общий кровоток. Движение крови обеспечивают ритмические сокращения желудочков сердца, каждое из которых изгоняет в аорту (левый желудочек) и лёгочную артерию (правый желудочек) приблизительно по 70 мл крови, а при тяжёлой физической нагрузке у хорошо тренированных людей этот показатель (его называют систолическим или ударным объёмом) может увеличиваться до 180 мл. Сердце взрослого человека сокращается в покое приблизительно 75 раз в минуту, а значит за это время через него должно пройти свыше 5 литров крови (75´70 = 5250 мл) – этот показатель называется минутным объёмом кровообращения. При каждом сокращении левого желудочка давление в аорте, а затем в артериях повышается до 100-140 мм рт. ст. (систолическое давление), а к началу следующего сокращения опускается до 60-90 мм (диастолическое давление). В лёгочной артерии эти показатели меньше: систолическое – 15-30 мм, диастолическое – 2-7 мм – это связано с тем, что т.н. малый круг кровообращения, начинающийся от правого желудочка и доставляющий кровь к лёгким, короче большого, а потому оказывает меньшее сопротивление току крови и не требует высокого давления. Таким образом, главными показателями функции кровообращения оказываются частота и сила сердечных сокращений (от неё зависит систолический объём), систолическое и диастолическое давление, которые определяются объёмом жидкости в замкнутой системе кровобращения, минутным объёмом кровотока и сопротивлением сосудов этому кровотоку. Сопротивление сосудов изменяется в связи с сокращениями их гладких мышц: чем уже становится просвет сосуда, тем большее сопротивление кровотоку он оказывает.

Постоянство объёма жидкости в организме регулируют гормоны (См. главу 12), но какая часть крови будет находиться в депо, а какая циркулировать по сосудам, какое сопротивление окажут сосуды кровотоку – зависит от управления сосудами симпатическим отделом. Работу сердца, а значит и величину артериального давления, в первую очередь систолического, контролируют и симпатические, и блуждающие нервы (хотя эндокринные механизмы и местная саморегуляция здесь тоже играют важную роль). Механизм слежения за изменениями важнейших параметров системы кровообращения довольно прост, он сводится к непрерывной регистрации барорецепторами степени растяжения дуги аорты и места разделения общих сонных артерий на наружные и внутренние (эта область называется каротидным синусом). Этого достаточно, поскольку растяжение указанных сосудов отражает и работу сердца, и сопротивление сосудов, и объём крови.

Чем сильнее растягиваются аорта и сонные артерии, тем с большей частотой распространяются от бароцепторов нервные импульсы по чувствительным волокнам языкоглоточного и блуждающего нервов к соответствующим ядрам продолговатого мозга. Это приводит к двум последствиям: повышению влияния блуждающего нерва на сердце и понижению симпатического влияния на сердце и сосуды. В результате уменьшается работа сердца (снижается минутный объём) и понижается тонус сосудов, оказывающих сопротивление кровотоку, а это приводит к уменьшению растяжения аорты и сонных артерий и соответственному уменьшению импульсации от барорецепторов. Если она станет понижаться, то произойдёт повышение симпатической активности и снизится тонус блуждающих нервов, а в результате опять восстановится надлежащее значение важнейших параметров кровообращения.

Непрерывное движение крови необходимо, в первую очередь, для того, чтобы доставлять работающим клеткам кислород от лёгких, а образующийся в клетках углекислый газ уносить к лёгким, где он выделяется из организма. Содержание этих газов в артериальной крови поддерживается на неизменном уровне, который отражают значения их парциального давления (от лат. pars – часть, т. е. частичного от целого атмосферного): кислорода – 100 мм рт. ст., углекислого газа – около 40 мм рт. ст. Если ткани станут работать интенсивнее, то они начнут забирать из крови больше кислорода и отдавать в неё больше углекислого газа, что приведёт соответственно к понижению содержания кислорода и повышению – углекислого газа в артериальной крови. Эти сдвиги улавливают хеморецепторы, расположенные в тех же сосудистых областях, что и барорецепторы, т. е. в аорте и развилках сонных артерий, питающих мозг. Поступление более частых сигналов от хеморецепторов в продолговатый мозг приведёт к активации симпатического отдела и уменьшению тонуса блуждающих нервов: в результате усилится работа сердца, повысится тонус сосудов и под большим давлением кровь станет быстрее циркулировать между лёгкими и тканями. Одновременно с этим увеличенная по частоте импульсация от хеморецепторов сосудов приведёт к учащению и углублению дыхания и быстро циркулирующая кровь станет быстрее насыщаться кислородом и освобождаться от излишков углекислого газа: в итоге показатели газового состава крови нормализуются.

Таким образом, барорецепторы и хеморецепторы аорты и сонных артерий незамедлительно реагируют на сдвиги гемодинамических параметров (проявляющиеся увеличением или уменьшением растяжения стенок этих сосудов), а также на изменения насыщения крови кислородом и углекислым газом. Вегетативные центры, получившие от них информацию, так изменяют тонус симпатического и парасимпатического отделов, что оказываемое ими на рабочие органы влияние приводит к нормализации отклонившихся от гомеостатических констант параметров.

Конечно, это лишь часть сложной системы регуляции кровообращения, в которой наряду с нервными существуют ещё гуморальные и местные механизмы регуляции. Например, любой особенно интенсивно работающий орган потребляет больше кислорода и образует больше недоокисленных продуктов обмена, которые способны сами расширять сосуды, снабжающие орган кровью. В результате он начинает забирать из общего потока крови больше, чем забирал прежде, а потому в центральных сосудах из-за уменьшающегося объёма крови понижается давление и возникает необходимость регулировать этот сдвиг уже с помощью нервных и гуморальных механизмов.

При физической работе система кровообращения должна прилаживаться и к мышечным сокращениям, и к повышенному потреблению кислорода, и к накоплению продуктов обмена, и к изменяющейся активности других органов. При различных поведенческих реакциях, при переживании эмоций в организме происходят сложные изменения, отражающиеся на постоянстве внутренней среды: в таких случаях весь комплекс таких изменений, активирующих разные области мозга, непременно отражается на активности нейронов гипоталамуса, а он уже координирует механизмы вегетативной регуляции с мышечной работой, эмоциональным состоянием или поведенческими реакциями.

11.10. Основные звенья регуляции дыхания

При спокойном дыхании в лёгкие во время вдоха входит около 300-500 куб. см воздуха и такой же объём воздуха при выдохе уходит в атмосферу – это т.н. дыхательный объём. После спокойного вдоха можно дополнительно вдохнуть 1,5-2 литра воздуха – это резервный объём вдоха, а после обычного выдоха можно изгнать из лёгких ещё 1-1,5 литра воздуха – это резервный объём выдоха. Сумма дыхательного и резервных объёмов составляет т.н. жизненную ёмкость лёгких, которую обычно определяют с помощью спирометра. Взрослые люди дышат в среднем 14-16 раз в минуту, вентилируя за это время через лёгкие 5-8 литров воздуха – это минутный объём дыхания. При увеличении глубины дыхания за счёт резервных объёмов и одновременном повышении частоты дыхательных движений можно в несколько раз увеличить минутную вентиляцию лёгких (в среднем до 90 литров в минуту, а тренированные люди способны удвоить и этот показатель).

Воздух поступает в альвеолы лёгких – воздушные ячейки, густо оплетённые сетью кровеносных капилляров, несущих венозную кровь: она мало насыщена кислородом и избыточно – углекислым газом (Рис. 11.7).

Очень тонкие стенки альвеол и капилляров не препятствуют газообмену: по градиенту парциальных давлений кислород из альвеолярного воздуха переходит в венозную кровь, а углекислый газ диффундирует в альвеолы. В результате от альвеол течёт артериальная кровь с парциальным давлением в ней кислорода около 100 мм рт. ст., а углекислого газа – не более 40 мм рт. ст.. Вентиляция лёгких всё время обновляет состав альвеолярного воздуха, а непрерывный кровоток и диффузия газов через лёгочную мембрану позволяют постоянно превращать венозную кровь в артериальную.

Вдох происходит благодаря сокращениям дыхательных мышц: наружных межрёберных и диафрагмы, которые управляются двигательными нейронами шейного (диафрагма) и грудного отдела спинного мозга (межрёберные мышцы). Эти нейроны активируются нисходящими из дыхательного центра ствола мозга путями. Дыхательный центр образуют несколько групп нейронов продолговатого мозга и моста, одна из них (дорсальная инспираторная группа) самопроизвольно активируется в условиях покоя 14-16 раз в минуту, а это возбуждение проводится к двигательным нейронам дыхательных мышц. В самих лёгких, в покрывающей их плевре и в воздухоносных путях есть чувствительные нервные окончания, которые возбуждаются при растяжении лёгких и движении воздуха по дыхательным путям во время вдоха. Сигналы от этих рецепторов поступают в дыхательный центр, который на их основе регулирует продолжительность и глубину вдоха.

При нехватке кислорода в воздухе (например, в разряжённом воздухе горных вершин) и при физической работе насыщение крови кислородом уменьшается. При физической работе одновременно с этим растёт содержание углекислого газа в артериальной крови, поскольку лёгкие, работая в обычном режиме, не успевают очищать от него кровь до необходимой кондиции. На сдвиг газового состава артериальной крови реагируют хеморецепторы аорты и сонных артерий, сигналы от которых поступают к дыхательному центру. Это приводит к изменению характера дыхания: вдох происходит чаще и делается глубже за счёт резервных объёмов, выдох, обычно пассивный, становится при таких обстоятельствах форсированным (активируется вентральная группа нейронов дыхательного центра и начинают действовать внутренние межрёберные мышцы). В результате этого увеличивается минутный объём дыхания и большая вентиляция лёгких при одновременно увеличенном потоке крови через них позволяет восстановить газовый состав крови до гомеостатического стандарта. Сразу после интенсивной физической работы у человека сохраняется одышка и учащённый пульс, которые прекращаются, когда кислородный долг будет погашен.

Ритм активности нейронов дыхательного центра приспосабливается и к ритмической деятельности дыхательных, и других скелетных мышц, от проприоцепторов которых он непрерывно получает информацию. Координацию дыхательной ритмики с другими гомеостатическими механизмами осуществляет гипоталамус, он же, взаимодействуя с лимбической системой и корой, меняет модель дыхания при эмоциональных реакциях. Кора больших полушарий может оказывать прямое влияние на функцию дыхания, приспосабливая его к разговору или пению. Только непосредственное влияние коры позволяет произвольно изменять характер дыхания, намеренно задерживать его, урежать или учащать, но всё это возможно лишь в ограниченных пределах. Так, например, произвольная задержка дыхания у большинства людей не превышает минуты, после чего оно непроизвольно возобновляется из-за чрезмерного накопления углекислого газа в крови и одновременного уменьшения в ней кислорода.

Резюме

Постоянство внутренней среды организма является гарантом его свободной деятельности. Быстрое восстановление смещённых гомеостатических констант осуществляет вегетативная нервная система. Она способна также предупреждать возможные сдвиги гомеостаза, связанные с изменениями внешней среды. Два отдела вегетативной нервной системы одновременно контролируют деятельность большинства внутренних органов, оказывая на них противоположное влияние. Повышение тонуса симпатических центров проявляется эрготропными реакциями, а повышение парасимпатического тонуса – трофотропными. Активность вегетативных центров координирует гипоталамус, он согласует их деятельность с работой мышц, эмоциональными реакциями и поведением. Гипоталамус взаимодействует с лимбической системой мозга, ретикулярной формацией и корой больших полушарий. Вегетативные механизмы регуляции играют главную роль в осуществлении жизненно важных функций кровообращения и дыхания.

Вопросы для самоконтроля

165. В каком отделе спинного мозга находятся тела парасимпатических нейронов?

А. Шейный; Б. Грудной; В. Верхние сегменты поясничного отдела; Г. Нижние сегменты поясничного отдела; Д. Крестцовый.

166. Какие черепно-мозговые нервы не содержат волокон парасимпатических нейронов?

А. Тройничные; Б. Глазодвигательные; В. Лицевые; Г. Блуждающие; Д. Языкоглоточные.

167. Какие ганглии симпатического отдела следует отнести к паравертебральным?

А. Симпатический ствол; Б. Шейный; В. Звёздчатый; Г. Чревный; В. Нижний брыжеечный.

168. Какой из указанных ниже эффекторов получает в основном лишь симпатическую иннервацию?

А. Бронхи; Б. Желудок; В. Кишечник; Г. Кровеносные сосуды; Д. Мочевой пузырь.

169. Что из перечисленного отражает повышение тонуса парасимпатического отдела?

А. Расширение зрачков; Б. Расширение бронхов; В. Повышение частоты сокращений сердца; Г. Повышение секреции пищеварительных желёз; Д. Повышение секреции потовых желёз.

170. Что из указанного характерно для повышения тонуса симпатического отдела?

А. Повышение секреции бронхиальных желёз; Б. Усиление моторики желудка; В. Повышение секреции слёзных желёз; Г. Сокращение мускулатуры мочевого пузыря; Д. Увеличенное расщепление углеводов в клетках.

171. Деятельность какой эндокринной железы контролируется симпатическими преганглионарными нейронами?

А. Кора надпочечников; Б. Мозговое вещество надпочечников; В. Поджелудочная железа; Г. Щитовидная железа; Д. Околощитовидные железы.

172. С помощью какого нейромедиатора происходит передача возбуждения в симпатических вегетативных ганглиях?

А. Адреналин; Б. Норадреналин; В. Ацетилхолин; Г. Дофамин; Д. Серотонин.

173. С помощью какого медиатора парасимпатические постганглионарные нейроны обычно действуют на эффекторы?

А. Ацетилхолин; Б. Адреналин; В. Норадреналин; Г. Серотонин; Д. Вещество Р.

174. Что из указанного характеризует Н-холинорецепторы?

А. Принадлежат постсинаптической мембране рабочих органов, регулируемых парасимпатическим отделом; Б. Ионотропные; В. Активируются мускарином; Г. Относятся только к парасимпатическому отделу; Д. Находятся только на пресинаптической мембране.

175. Какие рецепторы должны связаться с медиатором, чтобы в эффекторной клетке началось повышенное расщепление углеводов?

А. a-адренорецепторы; Б. b-адренорецепторы; В. Н-холинорецепторы; Г. М-холинорецепторы; Д. Ионотропные рецепторы.

176. Какая структура мозга осуществляет координацию вегетативных функций и поведения?

А. Спинной мозг; Б. Продолговатый мозг; В. Средний мозг; Г. Гипоталамус; Д. Кора больших полушарий.

177. Какой гомеостатический сдвиг окажет непосредственное действие на центральные рецепторы гипоталамуса?

А. Повышение артериального давления; Б. Повышение температуры крови; В. Увеличение объёма крови; Г. Повышение парциального давления кислорода в артериальной крови; Д. Снижение кровяного давления.

178. Чему равна величина минутного объёма кровообращения, если ударный объём равен 65 мл, а частота сокращений сердца – 78 в одну минуту?

А. 4820 мл; Б. 4960 мл; В. 5070 мл; Г. 5140 мл; Д. 5360 мл.

179. Где расположены барорецепторы, поставляющие информацию вегетативным центрам продолговатого мозга, осуществляющим регуляцию работы сердца и артериального давления?

А. Сердце; Б. Аорта и сонные артерии; В. Крупные вены; Г. Мелкие артерии; Д. Гипоталамус.

180. В положении лёжа у человека рефлекторно уменьшается частота сокращений сердца и артериальное давление. Активация каких рецепторов вызывает эти изменения?

А. Интрафузальные рецепторы мышц; Б. Сухожильные рецепторы Гольджи; В.Вестибулярные рецепторы; Г. Механорецепторы дуги аорты и сонных артерий; Д. Внутрисердечные механорецепторы.

181. Какое событие скорее всего произойдёт вследствие повышения напряжения углекислого газа в крови?

А. Уменьшение частоты дыхания; Б. Уменьшение глубины дыхания; В. Уменьшение частоты сокращений сердца; Г. Уменьшение силы сокращений сердца; Д. Повышение артериального давления.

182. Чему равна жизненная ёмкость лёгких, если дыхательный объём составляет 400 мл, резервный объём вдоха – 1500 мл, а резервный объём выдоха – 2 л?

А. 1900 мл; Б. 2400 мл; В. 3,5 л; Г. 3900 мл; Д. По имеющимся данным жизненную ёмкость лёгких определить невозможно.

183. Что может произойти вследствие непродолжительной произвольной гипервентиляции лёгких (частого и глубокого дыхания)?

А. Повышение тонуса блуждающих нервов; Б. Повышение тонуса симпатических нервов; В. Повышение импульсация от сосудистых хеморецепторов; Г. Повышение импульсация от барорецепторов сосудов; Д. Повышение систолического давления.

184. Что понимают под тонусом вегетативных нервов?

А. Их способность возбуждаться при действии раздражителя; Б. Способность проводить возбуждение; В. Наличие спонтанной фоновой активности; Г. Повышение частоты проводимых сигналов; Д. Любое изменение частоты передаваемых сигналов.