Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Правильной пирамиде все. Азы геометрии: правильная пирамида — это

Введение

Когда мы начали изучать стереометрические фигуры мы затронули тему «Пирамида». Нам понравилась это тема, потому что пирамида очень часто употребляется в архитектуре. И так как наша будущая профессия архитектора, вдохновившись этой фигурой, мы думаем, что она сможет подтолкнуть нас к отличным проектам.

Прочность архитектурных сооружений, важнейшее их качество. Связывая прочность, во-первых, с теми материалами, из которых они созданы, а, во-вторых, с особенностями конструктивных решений, оказывается, прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой.

Другими словами, речь идет о той геометрической фигуре, которая может рассматриваться как модель соответствующей архитектурной формы. Оказывается, что геометрическая форма также определяет прочность архитектурного сооружения.

Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.

Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. С другой стороны, форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.



Цель проекта : узнать что-то новое о пирамидах, углубить знания и найти практическое применение.

Для достижения поставленной цели потребовалось решить следующие задачи:

· Узнать исторические сведения о пирамиде

· Рассмотреть пирамиду, как геометрическую фигуру

· Найти применение в жизни и архитектуре

· Найти сходство и различие пирамид, расположенных в разных частях света


Теоретическая часть

Исторические сведения

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демокрит, а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.

Усыпальницы египетских фараонов. Крупнейшие из них - пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде.


Основные понятия

Пирамидой называется многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины;

Боковые грани - треугольники, сходящиеся в вершине;

Боковые ребра - общие стороны боковых граней;

Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания;

Высота - отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);

Диагональное сечение пирамиды - сечение пирамиды, проходящее через вершину и диагональ основания;

Основание - многоугольник, которому не принадлежит вершина пирамиды.

Основные свойства правильной пирамиды

Боковые ребра, боковые грани и апофемы соответственно равны.

Двугранные углы при основании равны.

Двугранные углы при боковых ребрах равны.

Каждая точка высоты равноудалена от всех вершин основания.

Каждая точка высоты равноудалена от всех боковых граней.


Основные формулы пирамиды

Площадь боковой и полной поверхности пирамиды.

Площадью боковой поверхности пирамиды (полной и усечённой) называется сумма площадей всех ее боковых граней, площадью полной поверхности – сумма площадей всех ее граней.

Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

p - периметр основания;

h - апофема.

Площадь боковой и полной поверхностей усеченной пирамиды.

p 1 , p 2 - периметры оснований;

h - апофема.

Р - площадь полной поверхности правильной усеченной пирамиды;

S бок - площадь боковой поверхности правильной усеченной пирамиды;

S 1 + S 2 - площади основания

Объем пирамиды

Формула объёма используется для пирамид любого вида.

H - высота пирамиды.


Углы пирамиды

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол образуется двумя перпендикулярами.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах .

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания .

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды .


Сечения пирамиды

Поверхность пирамиды – это поверхность многогранника. Каждая ее грань представляет собой плоскость, поэтому сечение пирамиды, заданной секущей плоскостью – это ломаная линия, состоящая из отдельных прямых.

Диагональное сечение

Сечение пирамиды плоскостью, проходящей через два боковых ребра, не лежащих на одной грани, называется диагональным сечением пирамиды.

Параллельные сечения

Теорема :

Если пирамида пересечена плоскостью, параллельной основанию, то боковые ребра и высоты пирамиды делятся этой плоскостью на пропорциональные части;

Сечением этой плоскости является многоугольник, подобный основанию;

Площади сечения и основания относятся друг к другу как квадраты их расстояний от вершины.

Виды пирамиды

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, и вершина пирамиды проектируется в центр основания.

У правильной пирамиды:

1. боковые ребра равны

2. боковые грани равны

3. апофемы равны

4. двугранные углы при основании равны

5. двугранные углы при боковых ребрах равны

6. каждая точка высоты равноудалена от всех вершин основания

7. каждая точка высоты равноудалена от всех боковых граней

Усеченная пирамида – часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

Основание и соответствующие сечение усеченной пирамиды называются основаниями усеченной пирамиды .

Перпендикуляр, проведенный из какой-либо точки одного основания на плоскость другого, называется высотой усеченной пирамиды.


Задачи

№1. В правильной четырехугольной пирамиде точка О – центр основания, SO=8 cм, BD=30 см. Найдите боковое ребро SA.


Решение задач

№1. В правильной пирамиде все грани и ребра равны.

Рассмотрим OSB: OSB-прямоугольный прямоугольник, т. к.

SB 2 =SO 2 +OB 2

SB 2 =64+225=289

Пирамида в архитектуре

Пирамида - монументальное сооружение в форме обычной правильной геометрической пирамиды, в которой боковые стороны сходятся в одной точке. По функциональному назначению пирамиды в древности были местом захоронения или поклонения культу. Основа пирамиды может быть треугольной, четырехугольной или в форме многоугольника с произвольным числом вершин, но наиболее распространенной версией является четырехугольная основа.

Известно немалое количество пирамид, построенных разными культурами Древнего мира в основном в качестве храмов или монументов. К крупным пирамидам относятся египетские пирамиды.

По всей Земле можно увидеть архитектурные сооружения в виде пирамид. Здания-пирамиды напоминают о древних временах и очень красиво выглядят.

Египетские пирамиды величайшие архитектурные памятники Древнего Египта, среди которых одно из «Семи чудес света» пирамида Хеопса. От подножия до вершины она достигает 137, 3 м, а до того, как утратила верхушку, высота ее была 146, 7 м

Здание радиостанции в столице Словакии, напоминающее перевернутую пирамиду, было построено в 1983 г. Помимо офисов и служебных помещений, внутри объема находится достаточно вместительный концертный зал, который имеет один из самых больших органов в Словакии.

Лувр, который "молчит неизменно и величественно, как пирамида" на протяжении веков перенёс немало изменений прежде, чем превратиться в величайший музей мира. Он родился как крепость, воздвигнутая Филиппом Августом в 1190 г., вскоре превратившаяся в королевскую резиденцию. В 1793 г. дворец становится музеем. Коллекции обогащаются благодаря завещаниям или покупкам.

  • апофема — высота боковой грани правильной пирамиды , которая проведена из ее вершины (кроме того, апофемой является длина перпендикуляра, который опущен из середины правильного многоугольника на 1-ну из его сторон);
  • боковые грани (ASB, BSC, CSD, DSA) — треугольники, которые сходятся в вершине;
  • боковые ребра ( AS , BS , CS , DS ) — общие стороны боковых граней;
  • вершина пирамиды (т. S) — точка, которая соединяет боковые ребра и которая не лежит в плоскости основания;
  • высота ( SO ) — отрезок перпендикуляра, который проведен через вершину пирамиды к плоскости ее основания (концами такого отрезка будут вершина пирамиды и основание перпендикуляра);
  • диагональное сечение пирамиды — сечение пирамиды, которое проходит через вершину и диагональ основания;
  • основание (ABCD) — многоугольник, которому не принадлежит вершина пирамиды.

Свойства пирамиды.

1. Когда все боковые ребра имеют одинаковую величину, тогда:

  • около основания пирамиды легко описать окружность , при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • боковые ребра образуют с плоскостью основания одинаковые углы ;
  • кроме того, верно и обратное, т.е. когда боковые ребра образуют с плоскостью основания равные углы, либо когда около основания пирамиды можно описать окружность и вершина пирамиды будет проецироваться в центр этой окружности, значит, все боковые ребра пирамиды имеют одинаковую величину.

2. Когда боковые грани имеют угол наклона к плоскости основания одной величины, тогда:

  • около основания пирамиды легко описать окружность, при этом вершина пирамиды будет проецироваться в центр этой окружности;
  • высоты боковых граней имеют равную длину;
  • площадь боковой поверхности равняется ½ произведения периметра основания на высоту боковой грани.

3. Около пирамиды можно описать сферу в том случае, если в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы станет точка пересечения плоскостей, которые проходят через середины ребер пирамиды перпендикулярно им. Из этой теоремы делаем вывод, что как около всякой треугольной, так и около всякой правильной пирамиды можно описать сферу.

4. В пирамиду можно вписать сферу в том случае, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в 1-ной точке (необходимое и достаточное условие). Эта точка станет центром сферы.

Простейшая пирамида.

По количеству углов основания пирамиды делят на треугольные, четырехугольные и так далее.

Пирамида будет треугольной , четырехугольной , и так далее, когда основанием пирамиды будет треугольник, четырехугольник и так далее. Треугольная пирамида есть четырехгранник — тетраэдр . Четырехугольная — пятигранник и так далее.

Продолжаем рассматривать задачи входящие в ЕГЭ по математике. Мы уже исследовали задачи, где в условии дан и требуется найти расстояние между двумя данными точками либо угол.

Пирамида - это многогранник, основание которого является многоугольником, остальные грани - треугольники, при чём они имеют общую вершину.

Правильная пирамида — это пирамида в основании которой лежит правильный многоугольник, а его вершина проецируется в центр основания.

Правильная четырехугольная пирамида — снованием является квадрат.Вершина пирамиды проектируется в точку пересечения диагоналей основания (квадрата).


ML - апофема
∠MLO - двугранный угол при основании пирамиды
∠MCO - угол между боковым ребром и плоскостью основания пирамиды

В этой статье мы с вами рассмотрим задачи на решение правильной пирамиды. Требуется найти какой-либо элемент, площадь боковой поверхности, объём, высоту. Разумеется, необходимо знать теорему Пифагора, формулу площади боковой поверхности пирамиды, формулу для нахождения объёма пирамиды.

В статье « » представлены формулы, которые необходимы для решения задач по стереометрии. Итак, задачи:

SABCD точка O - центр основания, S вершина, SO = 51, AC = 136. Найдите боковое ребро SC .

В данном случае в основании лежит квадрат. Это означает, что диагонали AC и BD равны, они пересекаются и точкой пересечения делятся пополам. Отметим, что в правильной пирамиде высота опущенная из её вершины проходит через центр основания пирамиды. Таким образом, SO является высотой, а треугольник SOC прямоугольный. Тогда по теореме Пифагора:

Как извлекать корень из большого числа .

Ответ: 85

Решите самостоятельно:

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, AC = 6. Найдите боковое ребро SC .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SC = 5, AC = 6. Найдите длину отрезка SO .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, SC = 5. Найдите длину отрезка AC .

SABC R - середина ребра BC , S - вершина. Известно, что AB = 7, а SR = 16. Найдите площадь боковой поверхности.

Площадь боковой поверхности правильной треугольной пирамиды равна половине произведения периметра основания на апофему (апофема это высота боковой грани правильной пирамиды, проведённая из её вершины):

Или можно сказать так: площадь боковой поверхности пирамиды равна сумме площадей трёх боковых граней. Боковыми гранями в правильной треугольной пирамиде являются равные по площади треугольники. В данном случае:

Ответ: 168

Решите самостоятельно:

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SR .

В правильной треугольной пирамиде SABC L - середина ребра BC , S - вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB .

В правильной треугольной пирамиде SABC M . Площадь треугольника ABC равна 25, объем пирамиды равен 100. Найдите длину отрезка MS .

Основание пирамиды - равносторонний треугольник . Поэтому M является центром основания, а MS - высотой правильной пирамиды SABC . Объем пирамиды SABC равен: осмотреть решение

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Площадь треугольника ABC равна 3, MS = 1. Найдите объем пирамиды.

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Объем пирамиды равен 1, MS = 1. Найдите площадь треугольника ABC .

На этом закончим. Как видите, задачи решаются в одно-два действия. В будущем рассмотрим с вами другие задачи из данной части, где даны тела вращения, не пропустите!

Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.


Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.

Треугольная пирамида - это пирамида, в основе которой находится треугольник. Высота этой пирамиды - это перпендикуляр, который опущен из вершины пирамиды на ее основания.

Нахождение высоты пирамиды

Как найти высоту пирамиды? Очень просто! Для нахождения высоты любой треугольной пирамиды можно воспользоваться формулой объема: V = (1/3)Sh, где S - это площадь основания, V - объем пирамиды, h - ее высота. Из этой формулы вывести формулу высоты: для нахождения высоты треугольной пирамиды, нужно умножить объем пирамиды на 3, а потом поделить получившееся значение на площадь основания, это будет: h = (3V)/S. Поскольку основание треугольной пирамиды - это треугольник, можно воспользоваться формулой подсчета площади треугольника. Если нам известны: площадь треугольника S и его сторона z, то по формуле площади S=(1/2)γh: h = (2S)/γ, где h - это высота пирамиды, γ - это ребро треугольника; угол между сторонами треугольника и сами две стороны, то по такой формуле: S = (1/2)γφsinQ, где γ, φ - это стороны треугольника, находим площадь треугольника. Значение синуса угла Q нужно посмотреть в таблице синусов, которая есть в Интернете. Далее подставляем значение площади в формулу высоты: h = (2S)/γ. Если в задании требуется вычислить высоту треугольной пирамиды, то объем пирамиды уже известен.

Правильная треугольная пирамида

Найдите высоту правильной треугольной пирамиды, то есть пирамиды, в которой все грани - это равносторонние треугольники, зная величину ребра γ. В этом случае ребра пирамиды - это стороны равносторонних треугольников. Высота правильной треугольной пирамиды будет: h = γ√(2/3), где γ - это ребро равностороннего треугольника, h - это высота пирамиды. Если площадь основания (S) неизвестна, а даны лишь: длина ребра (γ) и объем (V) многогранника, то необходимую переменную в формуле из прежнего шага нужно заменить ее эквивалентом, который выражен через длину ребра. Площадь треугольника (правильного) равна 1/4 от произведения длины стороны этого треугольника, возведенную в квадрат на квадратный корень из 3. Подставляем эту формулу вместо площади основания в предыдущую формулу, и получаем такую формулу: h = 3V4/(γ 2 √3) = 12V/(γ 2 √3). Объем тетраэдра можно выразить через длину его ребра, то из формулы для вычисления высоты фигуры можно убрать все переменные и оставить только сторону треугольной грани фигуры. Объем такой пирамиды можно вычислить, поделив на 12 из произведения возведенную в куб длину его грани на квадратный корень из 2.

Подставляем это выражение в предыдущую формулу, получаем такую формулу для вычисления: h = 12(γ 3 √2/12)/(γ 2 √3) = (γ 3 √2)/(γ 2 √3) = γ√(2/3) = (1/3)γ√6. Также правильную треугольную призму можно вписывать в сферу, и зная только радиус сферы (R) можно найти и саму высоту тетраэдра. Длина ребра тетраэдра равна: γ = 4R/√6. Заменим переменную γ этим выражением в предыдущей формуле и получаем формулу: h = (1/3)√6(4R)/√6 = (4R)/3. Такую же формулу можно иметь, зная радиус (R) окружности, вписанной в тетраэдр. В таком случае длина ребра треугольника будет равна 12 соотношениям между квадратным корнем из 6 и радиусом. Подставляем это выражение в предыдущую формулу и имеем: h = (1/3)γ√6 = (1/3)√6(12R)/√6 = 4R.

Как найти высоту правильной четырехугольной пирамиды

Чтобы ответить на вопрос, как найти длину высоты пирамиды, необходимо знать, сто такое правильная пирамида. Четырехугольная пирамида - это пирамида, в основе которой находится четырехугольник. Если в условиях задачи мы имеем: объем (V) и площадь основания (S) пирамиды, то формула для вычисления высоты многогранника (h) будет такая - разделить объем, умноженный на 3 на площадь S: h = (3V)/S. При квадратном основании пирамиды с известными: заданным объемом (V) и длиной стороны γ, замените площадь (S) в предыдущей формуле на квадрат длины стороны: S = γ 2 ; H = 3V/γ 2 . Высота правильной пирамиды h = SO проходит как раз через центр окружности, которая описанная около основания. Поскольку основание данной пирамиды - это квадрат, то точка О - это точка пересечения диагоналей AD и BC. Мы имеем: OC = (1/2)BC = (1/2)AB√6. Далее, мы в прямоугольном треугольнике SOC находим (по теореме Пифагора): SO = √(SC 2 -OC 2). Теперь Вы знаете, как найти высоту правильной пирамиды.