Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Метрология. Размерность физической величины

Cтраница 3


И Размерностью физической величины называется выражение, характеризующее связь этой физической величины с основными величинами данной системы единиц. Физическая величина называется безразмерной величиной, если в выражение ее размерности все основные величины входят в нулевой степени. Числовое значение безразмерной величины не зависит от выбора системы единиц.  

Под размерностью физической величины следует понимать выражение, отражающее связь рассматриваемой величины с основными величинами системы, если принять коэффициент пропорциональности в этом выражении равным безразмерной единице. Размерность представляет собой произведение размерностей основных величин системы, возведенных с соответствующие степени.  

Итак, размерность физической величины указывает, как в данной абсолютной системе единиц изменяются единицы, служащие для измерения этой физической величины, при изменении масштабов основных единиц. Например, сила в системе LMT имеет размерность LMT 2; это значит, что при увеличении единицы длины в п раз единица силы также увеличивается в п раз; при увеличении единицы массы в п раз единица силы также увеличивается в п раз и, наконец, при увеличении единицы времени в п раз единица силы уменьшается в 2 раз.  

Соображения, касающиеся размерности физических величин, помогают в решении задач огромной практической важности, например задачи о стационарном обтекании жидкостью или газом препятствия, или, что то же самое, о движении тела в среде.  

Для указания размерности физических величин пользуются символическими обозначениями, например LpM. Это означает, что в системе LMT число, выражающее результат измерения данной физической величины, уменьшится в пр раз, если единицу длины увеличить в п раз, увеличится в п 1 раз, если единицу массы увеличить в п раз, и, наконец, увеличится в пг раз, если единицу времени увеличить в п раз.  

Результат определения размерности физической величины принято записывать условным равенством, в котором эта величина заключается в квадратные скобки.  

Если посмотреть на размерности физических величин, фактически встречающихся в физике, то нетрудно заметить, что во всех случаях числа р, q, r оказываются рациональными. Это не обязательно с, точки зрения теории размерности, а является результатом соответствующих определений физических величин.  

Таким образом, размерность физической величины представляет собой функцию, которая определяет, во сколько раз изменится численное значение этой величины при переходе от исходной системы единиц измерения к другой системе внутри данного класса.  

Определим теперь понятие размерности физической величины. Размерность показывает, как связана данная величина с основными физическими величинами. В Международной системе единиц СИ основным физическим величинам соответствуют основные единицы измерения: длина, масса, время, сила тока, температура, количество вещества и сила света.  

Путем использования анализа размерностей физических величин устанавливают функциональную связь между обобщенными переменными (уравнение подобия), а количественную зависимость получают в результате обработки экспериментальных данных.  

Если при определении размерности физической величины составляющие ее основные единицы измерения сокращаются, то такая величина называется безразмерной. Безразмерными величинами являются относительные координаты точек тела, аэродинамические коэффициенты профиля крыла, относительные деформации упругой конструкции. Постоянные и переменные безразмерные величины занимают особое место при изучении подобия физических явлений.  

Строго говоря, размерностью физической величины называются показатели степени в символическом уравнении, выражающем эту величину через основные физические величины.  

Когда мы говорим о размерности величины, мы имеем в виду основные единицы или основные величины, с помощью которых можно построить данную величину.
 Размерность площади, например, всегда равна квадрату длины (сокращенно ; квадратные скобки здесь и далее обозначают размерность); единицами измерения площади могут быть квадратный метр, квадратный сантиметр, квадратный фут и т.п.
 Скорость же может измеряться в единицах км/ч, м/с и миль/ч, но размерность ее всегда равна размерности длины [L] , деленной на размерность времени [Т] , т. е. мы имеем . Формулы, описывающие величину, в разных случаях могут быть различны, но размерность сохраняется той же самой. Например, площадь треугольника с основанием b и высотой h равна S = (1/2)bh , а площадь круга радиусом r равна S = πr 2 . Эти формулы отличаются друг от друга, но размерности в обоих случаях совпадают и равны .
 При определении размерности величины обычно пользуются размерностями основных, а не производных величин. Например, сила, как мы увидим ниже, имеет размерность массы [М] , умноженной на ускорение т.е. ее размерность равна .
 Правило подбора размерностей может помочь при выводе различных соотношений; такая процедура называется анализом размерностей. Один из полезных методов − это применение анализа размерностей для проверки правильности того или иного соотношения. В этом случае используются два простых правила. Во-первых, складывать или вычитать можно величины только одинаковой размерности (нельзя складывать сантиметры и граммы); во-вторых, величины, стоящие в обеих частях любого равенства, должны иметь одинаковые размерности.
 Пусть, например, получено выражение v = v o + (1/2)at 2 , где v − скорость тела по прошествии времени t , v o − начальная скорость тела, а − испытываемое им ускорение. Для проверки правильности этой формулы произведем анализ размерностей. Запишем равенство для размерности, учитывая, что скорость имеет размерность , а ускорение - размерность :

В этой формуле с размерностью не все в порядке; в правой части равенства стоит сумма величин, размерности которых не совпадают. Отсюда можно сделать вывод о том, что при выводе исходного выражения была допущена ошибка.
 Совпадение размерности в обеих частях еще не доказывает правильности выражения в целом. Например, может быть неверным безразмерный числовой множитель вида 1/2 или . Поэтому проверка размерности может указать только на ошибочность выражения, но не может служить доказательством его правильности.
 Анализ размерностей можно также использовать как быструю проверку правильности соотношения, в котором вы не уверены. Предположим, вы не можете вспомнить выражение для периода Т (времени, необходимого для совершения полного колебания) простого математического маятника длиной l : то ли эта формула выглядит как

то ли

где g − ускорение свободного падения, размерность которого, как и у любого ускорения, равна .
 Нас будет только интересовать, входят ли в нее величины l и g в виде отношения l/g или g/l .) Анализ размерностей показывает, что верна первая формула:

в то время как вторая ошибочна, поскольку

 Обратите внимание на то, что постоянный множитель является безразмерным и не входит в окончательный результат.
 Наконец, важное применение анализа размерностей (которое, впрочем, требует большой осторожности) − это нахождение вида искомого соотношения. Такая необходимость может возникнуть, если требуется определить лишь то, как одна величина зависит от других.
 Рассмотрим конкретный пример получения формулы для периода Т колебаний математического маятника. Сначала определим, от каких величин может зависеть Т . Период может зависеть от длины нити l , масса на конце маятника m , угла отклонения маятника α и ускорение свободного падения g . Он может также зависеть от сопротивления воздуха (мы будем использовать здесь вязкость воздуха), силы гравитационного притяжения Луны и т.д. Однако повседневный опыт указывает на то, что сила притяжения к Земле значительно превышает все остальные силы, которыми поэтому мы пренебрежем. Предположим, что период Т является функцией величин l , m , α и g , причем каждая из этих величин возведена в некоторую степень:

здесь С − безразмерная постоянная; α , β , и δ − показатели степени, которые нужно определить.
Запишем формулу размерности для этого соотношения:

После некоторых упрощений мы получаем

 В силу того что семь основных величин системы СИ (Система Интернациональная) − международная система единиц, вариант метрической системы используемый с 1960 г., когда на XI Генеральной конференции по мерам и весам был принят стандарт, который впервые получил название «Международная система единиц (СИ)». СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике
Основные единицы СИ, названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится.

Задача 3 . Определите энергию взаимодействия двух точечных масс m 1 и m 2 , находящихся на расстоянии r друг от друга.

Задача 4 . Определите силу взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Задача 5 . Определите напряженность гравитационного поля бесконечного цилиндра радиусом r o и плотностью ρ на расстоянии R (R > r o ) от оси цилиндра.

Задача 6 . Оценить дальность полета и высоту тела, брошенного под углом α к горизонту. Сопротивлением воздуха пренебречь.

Вывод:
1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.
2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до коэффициента.
3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.
4. Анализ размерностей при решении задачи широко используется в научных исследованиях.
5. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

Читайте еще статьи из

Некоторое значение физической величины принимается за единицу этой величины. Размер физической величины определяется соотношением, где - числовое значение этой величины. Это соотношение называют основным уравнением измерения, так как целью измерения, по существу, является определение числа.

Обеспечение единства измерений предполагает прежде всего повсеместное использование общепринятых и строго определенных единиц физических величин. Между различными физическими величинами объективно существует разного рода взаимосвязи количественно выражаемые соответствующими уравнениями. Эти уранения используются для выражения единиц одних физических величин через другие. Однако число таких уравнений в любом разделе науке меньше числа входящих в них физических величин. Поэтому для создания системы единиц этих величин некоторая их основополагающая часть, равная, должна быть оговорена и строго определена вне зависимости от других величин. Такие входящие в систему физические величины, условно принятые в качестве независимых от других величин, называются основными физическими величинами. Остальные величины, входящие в систему и определяемы через основные физические величины, называются производными физическими величинами. В соответствии с этим единицы физических величин также разделяются на основные и производные единицы.

Если A, B, C, … - полный набор основных физических величин данной системы, то для любой производной величины может быть определена ее размерность (dimension), отражающая ее связь в основными величинами системы, в виде

В этом соотношении показатели степени,… для каждой конкретной производной физической величины находятся из уравнений, связывающих ее с основными величинами (часть этих показателей обычно оказывается равной нулю). Соотношение (1), называется формулой размерности, показывает, во сколько раз изменится значение производной величины при определенном изменении значений основных величин. Например, если значения величин A, B, C увеличились соответственно в 2, 3 и 4 раза, то при этом, согласно (1), значение величины увеличится в раз.

Основное практическое значение формулы размерности состоит в том, что она позволяет непосредственно определять любую производную единицу через основные единицы данной системы,…

Правда, в этом выражении постоянный сомножитель требует дополнительного определения. Однако в большинстве практических случаев стараются выбирать. При таком условии производная единица называется когерентной.

Международная система единиц SI является когерентной системой (поскольку когерентны все ее производные единицы). Основные физические величины и их единицы в системе SI представлены в таблице 1.

Таблица 1

Кроме этого, система SI включает в себя две дополнительные единицы, которые определены также независимо от остальных единиц, но не участвуют в образовании производных единиц. Это -- единица плоского угла -- радиан (рад) и единица телесного угла -- стерадиан (ср). Все остальные единицы системы SI являются производными, причем часть из них имеет собственное наименование, а другие обозначаются в виде произведения степеней других. Например, такая производная физическая величина, как электрическая емкость, в системе SI имеет размерность и единицу, имеющую собственное наименование, -- фарад; а единица напряженности электрического поля, например, собственного наименования не имеет и обозначается как «вольт на метр» .

Совместно с единицами системы SI допускается использование кратных и дольных единиц, которые образуются путем добавления к названию единицы определенной приставки, означающей умножение данной единицы на, где -- целое положительное (для кратных единиц) или отрицательное (для дольных единиц) число. Например, 1 ГГц (гигагерц) = 109 Гц, 1 нс (наносекунда) = 10-9 с, 1 кВт = 103 Вт. В таблице 2 приведены наименования приставок дольных и кратных единиц.

Таблица 2

Дольные множители

Кратные множители

Отношение к главной единице

Наименование приставки

Сокращенное обозначение

приставки

Отношение к главной единице

Наименование приставки

Сокращенное обозначение

приставки

Совместно с системой SI допускается использование -- там, где это целесообразно, -- некоторых внесистемных единиц: для времени -- минута, час, сутки, для плоского угла -- градус, минута, секунда; для массы -- тонна; для объема -- литр; для площади -- гектар; для энергии -- электрон-вольт; для полной мощности -- вольт-ампер и т. д.

Кроме рассмотренных видов единиц достаточно широко применяются относительные и логарифмические величины. Они представляют собой соответственно отношение двух одноименных величин и логарифм этого отношения. К относительным величинам, в частности, относятся атомные и молекулярные массы химические элементов.

Относительные величины могут выражаться в безразличных единицах, в процентах (1% = 0,01) или в промилле (1‰=0,001=0,1%).

Значение логарифмических величин выражается в белах (Б), согласно формуле или в неперах (Нп): . В этих отношениях и -- энергетические величины (мощность, энергия, плотность энергии и т. п.); и -- силовые величины (напряжение, ток, плотность тока, напряженность поля и т. п.); коэффициенты 2 и 0,5 учитывают, что энергетические величины пропорциональны квадрату силовых величин. Из соотношений видно, что один бел (1 Б) соответствует отношению или; один непер (1 Нп) соответствует отношению или. Нетрудно выяснить, что 1 Нп = () Б = 0,8686 Б.

В радиотехнике, электронике, акустике логарифмические величины чаще всего выражают в децибелах (1 дБ = 0,1 Б):

Отношение мощностей в дБ записывается с коэффициентом 10, а отношение напряжений (или токов) -- с коэффициентом 20.

Очевидно, что относительные и логарифмические единицы -- инвариантны к используемой системе единиц, поскольку они определяются отношением однородных единиц.

Размерность физической величины, выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные.

Р. представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями Р.

Так, например, Р. скорости LT -1 , где Т представляет собой Р. времени, а L - Р. длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т.д.). В ряде случаев Р. позволяет устанавливать связи между соответствующими величинами

Размерность измеряемой величины является качественной ее характеристикой и обозначается символом dim, происходящим от слова dimension.

Размерностьосновных физических величин обозначается соответствующими заглавными буквами. Например, для длины, массы и времени dim l = L; dim m = M; dim t = T.

При определении размерностипроизводных величин руководствуются следующими правилами

1. Размерности левой и правой частей уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.

2. Алгебра размерностей мультипликативная, т. е. состоит из одного единственного действия - умножения.

2.1. Размерность произведения нескольких величин равна произведе­нию их размерностей. Так, если зависимость между значениями величин Q, А,В, С имеет вид Q = А × В × С, то

dim Q = dim A × dim B × dim C.

2.2. Размерность частного при делении одной величины на другую равна отношению их размерностей, т. е. если Q = А/В, то

dim Q = dim A/dim B.

2.3. Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени. Так, если Q = А n , то

dim Q = dim n А,

Например, если скорость определять по формуле V = l / t, то dim V = dim l/dim t = L/Т = LТ -1 . Если сила по второму закону Ньютона F = m×а, где а = V/ t - ускорение тела, то dim F = dim m × dim а = МL/Т 2 = MТ -2 .

Таким образом, всегда можно выразить размерность производной физической величины через размерности основных физических величин с помощью степенного одночлена:

dim Q = L a M b T g …,

где L, М, Т, . . . - размерности соответствующих основных физических величин; a, b, g, … - показатели размерности. Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем. Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений). В гуманитарных науках, искусстве, спорте, квалиметрии, где номенклатура основных величин не определена, теория размерностей не находит пока эффективного применения.

Производные величины, как было указано в § 1, можно выразить через основные. Для этого необходимо ввести два понятия: размерность производной величины и определяющее уравнение.

Размерностью физической величины называют выражение, отражающее связь величины с основными величинами

системы, в котором коэффициент пропорциональности принят равным единице.

Определяющим уравнением производной величины называют формулу, посредством которой физическая величина может быть в явном виде выражена через другие величины системы. При этом коэффициент пропорциональности в данной формуле должен быть равным единице. Например, определяющим уравнением скорости является формула

где длина пути, пройденного телом при равномерном движении за время Определяющее уравнение силы в системе второй закон динамики поступательного движения (второй закон Ньютона):

где а - ускорение, сообщаемое силой телу массой

Найдем размерности некоторых производных величин механики в системе Заметим, что начать необходимо с таких величин, которые в явном виде выражаются только через основные величины системы. Такими величинами являются, например, скорость, площадь, объем.

Чтобы найти размерность скорости, подставим в формулу (2.1) вместо длины пути и времени их размерности и Т:

Условимся обозначать размерность величины символом Тогда размерность скорости запишется в виде

Определяющими уравнениями площади и объема являются формулы:

где а - длина стороны квадрата, длина ребра куба. Подставив вместо размерность найдем размерности площади и объема:

Найти же размерность силы по ее определяющему уравнению (2.2) было бы затруднительно, так как нам неизвестна размерность ускорения а. Прежде чем определять размерность силы, надо найти размерность ускорения,

используя формулу ускорения равнопеременного движения:

где изменение скорости тела за время

Подставив сюда уже известные нам размерности скорости и времени, получим

Теперь по формуле (2.2) найдем размерность силы:

Точно так же для получения размерности мощности по ее определяющему уравнению где А - работа, совершенная за время необходимо предварительно найти размерность работы.

Из приведенных примеров следует, что не безразлично, в какой последовательности надо расположить определяющие уравнения при построении данной системы величин, т. е. при установлении размерностей производных величин.

Последовательность расположения производных величин при построении системы должна удовлетворять следующим условиям: 1) первой должна быть величина, которая выражается только через основные величины; 2) каждая последующая должна быть величиной, которая выражается только через основные и такие производные, которые ей предшествуют.

В качестве примера приведем в таблице последовательность величин, которая удовлетворяет таким условиям:

(см. скан)

Последовательность величин, приведенная в таблице, не является единственной, удовлетворяющей указанному выше условию. Отдельные величины в таблице могут быть переставлены. Например, плотность (строка 5) и момент инерции (строка 4) или момент силы (строка 11) и давление (строка 12) можно поменять местами, так как размерности этих величин определяются независимо друг от друга.

Но плотность в этой последовательности нельзя поставить раньше объема (строка 2), так как плотность выражается через объем и для определения ее размерности необходимо знать размерность объема. Момент силы, давление и работа (строка 13) не могут быть поставлены раньше силы, так как для определения их размерности надо знать размерность силы.

Из приведенной таблицы следует, что размерность любой физической величины в системе в общем виде может быть выражена равенством

где целые числа.

В системе величин механики размерность величины выразится в общем виде формулой

Приведем в общем виде формулы размерности соответственно в системах величин: в электростатической и электромагнитной LMT, в и в любой системе с числом основных величин больше трех:

Из формул (2.5) - (2.10) следует, что размерность величины представляет собой произведение размерностей основных величин, возведенных в соответствующие степени.

Показатель степени в которую возведена размерность основной величины, входящая в размерность производной величины, называется показателем размерности физической величины. Как правило, показатели размерности являются целыми числами. Исключение составляют показатели в электростатической и

электромагнитной системах LMT, в которых они могут быть и дробными.

Некоторые показатели размерности могут оказаться равными нулю. Так, записав размерности скорости и момента инерции в системе в виде

находим, что у скорости равен нулю показатель размерности момента инерции - показатель размерности у.

Может оказаться, что все показатели размерности некоторой величины равны нулю. Такая величина называется безразмерной. Безразмерными величинами являются, например, относительная деформация, относительная диэлектрическая проницаемость.

Величина называется размерной, если в ее размерности хотя бы одна из основных величин возведена в степень, не равную нулю.

Конечно, размерности одной и той же величины в различных системах могут оказаться разными. В частности, величина безразмерная в одной системе может оказаться размерной в другой системе. Например, абсолютная диэлектрическая проницаемость в электростатической системе является безразмерной величииой, в электромагнитной системе ее размерность равна а в системе величин

Пример. Определим, как изменится момент инерции системы с увеличением линейных размеров в 2 раза и массы в 3 раза.

Равномерность момента инерции

Пользуясь формулой (2.11), получим

Следовательно, момент инерции увеличится в 12 раз.

2. Пользуясь размерностями физических величин, можно определить, как изменится размер производной единицы с изменением размеров основных единиц, через которые она выражается, а также установить соотношение единиц в разных системах (см. с. 216).

3. Размерности физических величин позволяют обнаружить ошибки при решении физических задач.

Получив в результате решения расчетную формулу, следует проверить, совпадают ли размерности левой и правой частей формулы. Несовпадение этих размерностей свидетельствует о том, что в ходе решения задачи была допущена ошибка. Конечно, совпадение размерностей еще не означает, что задача решена правильно.

Рассмотрение других практических приложений размерностей выходит за рамки настоящего пособия.