Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Что такое статистическая значимость при оптимизации конверсии? Уровень статистической достоверности

При обосновании статистического вывода следует решить вопрос, где же проходит линия между принятием и отвержением нулевой гипотезы? В силу наличия в эксперименте случайных влияний эта граница не может быть проведена абсолютно точно. Она базируется на понятии уровня значимости. Уровнем значимости называется вероятность ошибочного отклонения нулевой гипотезы. Или, иными словами, уровень значимости - это вероятность ошибки первого рода при принятии решения. Для обозначения этой вероятности, как правило, употребляют либо греческую букву α, либо латинскую букву р. В дальнейшем мы будем употреблять букву р.

Исторически сложилось так, что в прикладных науках, использующих статистику, и в частности в психологии, считается, что низшим уровнем статистической значимости является уровень р = 0,05; достаточным - уровень р = 0,01 и высшим уровень р = 0,001. Поэтому в статистических таблицах, которые приводятся в приложении к учебникам по статистике, обычно даются таблич­ные значения для уровней р = 0,05, р = 0,01 и р = 0,001. Иногда даются табличные значения для уровней р - 0,025 и р = 0,005.

Величины 0,05, 0,01 и 0,001 - это так называемые стандартные уровни статистической значимости. При статистическом анализе экспериментальных данных психолог в зависимости от задач и гипотез исследования должен выбрать необходимый уровень значимости. Как видим, здесь наибольшая величина, или нижняя граница уровня статистической значимости, равняется 0,05 - это означает, что допускается пять ошибок в выборке из ста элементов (случаев, испытуемых) или одна ошибка из двад­цати элементов (случаев, испытуемых). Считается, что ни шесть, ни семь, ни большее количество раз из ста мы ошибиться не можем. Цена таких ошибок будет слишком велика.

Заметим, что в современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответ­ствующим статистическим методом. Эти уровни, обозначаемые буквой р, могут иметь различное числовое выражение в интервале от 0 до 1, например, р = 0,7, р = 0,23 или р = 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В то же время в последнем случае результаты значимы на уровне 12 тысячных. Это достоверный уровень.

Правило принятия статистического вывода таково: на основании полученных экспериментальных данных психолог подсчи­тывает по выбранному им статистическому методу так называе­мую эмпирическую статистику, или эмпирическое значение. Эту величину удобно обозначить как Ч эмп . Затем эмпирическая стати­стика Ч эмп сравнивается с двумя критическими величинами, ко­торые соответствуют уровням значимости в 5% и в 1% для выб­ранного статистического метода и которые обозначаются как Ч кр . Величины Ч кр находятся для данного статистического метода по соответствующим таблицам, приведенным в приложении к любому учебнику по статистике. Эти величины, как правило, всегда различны и их в дальнейшем для удобства можно назвать как Ч кр1 и Ч кр2 . Найденные по таблицам величины критических значений Ч кр1 и Ч кр2 удобно представлять в следующей стандартной форме записи:

Подчеркнем, однако, что мы использовали обозначения Ч эмп и Ч кр как сокращение слова «число». Во всех статистических методах приняты свои символические обозначения всех этих вели­чин: как подсчитанной по соответствующему статистическому методу эмпирической величины, так и найденных по соответ­ствующим таблицам критических величин. Например, при подсчете рангового коэффициента корреляции Спирмена по таблице критических значений этого коэффициента были найдены сле­дующие величины критических значений, которые для этого метода обозначаются греческой буквой ρ («ро»). Так для р = 0,05 по таб­лице найдена величина ρ кр 1 = 0,61 и для р = 0,01 величина ρ кр 2 = 0,76.

В принятой в дальнейшем изложении стандартной форме записи это выглядит следующим образом:

Теперь нам необходимо сравнить наше эмпирическое значе­ние с двумя найденными по таблицам критическими значения­ми. Лучше всего это сделать, расположив все три числа на так называемой «оси значимости». «Ось значимости» представляет собой прямую, на левом конце которой располагается 0, хотя он, как правило, не отмечается на самой этой прямой, и слева направо идет увеличение числового ряда. По сути дела это при­вычная школьная ось абсцисс ОХ декартовой системы координат. Однако особенность этой оси в том, что на ней выделено три участка, «зоны». Одна крайняя зона называется зоной незначимости, вторая крайняя зона - зоной значимости, а промежуточная - зоной неопреде­ленности. Границами всех трех зон являются Ч кр1 для р = 0,05 и Ч кр2 для р = 0,01, как это показано на рисунке.

В зависимости от правила принятия решения (правила вывода), предписанного в данном статистическом методе возможно два варианта.

Первый вариант: альтернативная гипотеза принимается, если Ч эмп Ч кр .

Или второй вариант: альтернативная гипотеза принимается, если Ч эмп Ч кр .

Подсчитанное Ч эмп по какому либо статистическому методу должно обязательно попасть в одну из трех зон.

Если эмпирическое значение попадает в зону незначимости, то принимается гипотеза Н 0 об отсутствии различий.

Если Ч эмп попало в зону значимости, принимается альтернативная гипотеза Н 1 о на­личии различий, а гипотеза Н 0 отклоняется.

Если Ч эмп попадает в зону неопределенности, перед исследователем стоит дилемма. Так, в зависи­мости от важности решаемой задачи он может считать полученную статистическую оценку достоверной на уровне 5%, и принять, тем самым гипотезу Н 1 , отклонив гипотезу Н 0 , либо - недостоверной на уровне 1%, приняв тем самым, гипотезу Н 0 . Подчеркнем, одна­ко, что это именно тот случай, когда психолог может допустить ошибки первого или второго рода. Как уже говорилось выше, в этих обстоятельствах лучше всего увеличить объем выборки.

Подчеркнем также, что величина Ч эмп может точно совпасть либо с Ч кр1 либо Ч кр2 . В первом случае можно считать, что оценка достоверна точно на уровне в 5% и принять гипотезу Н 1 , или, напротив, принять гипотезу Н 0 . Во втором случае, как пра­вило, принимается альтернативная гипотеза Н 1 о наличии разли­чий, а гипотеза Н 0 отклоняется.

Как вы думаете, что делает вашу «вторую половинку» особенной, значимой? Это связано с ее (его) личностью или с вашими чувствами, которые вы испытываете к этому человеку? А может, с простым фактом, что гипотеза о случайности вашей симпатии, как показывают исследования, имеет вероятность менее 5%? Если считать последнее утверждение достоверным, то успешных сайтов знакомств не существовало бы в принципе:

Когда вы проводите сплит-тестирование или любой другой анализ вашего сайта, неверное понимание «статистической значимости» может привести к неправильной интерпретации результатов и, следовательно, ошибочным действиям в процессе оптимизации конверсии. Это справедливо и для тысяч других статистических тестов, проводимых ежедневно в любой существующей отрасли.

Чтобы разобраться, что же такое «статистическая значимость», необходимо погрузиться в историю появления этого термина, познать его истинный смысл и понять, как это «новое» старое понимание поможет вам верно трактовать результаты своих исследований.

Немного истории

Хотя человечество использует статистику для решения тех или иных задач уже много веков, современное понимание статистической значимости, проверки гипотез, рандомизации и даже дизайна экспериментов (Design of Experiments (DOE) начало формироваться только в начале 20-го столетия и неразрывно связано с именем сэра Рональда Фишера (Sir Ronald Fisher, 1890-1962):

Рональд Фишер был эволюционным биологом и статистиком, который имел особую страсть к изучению эволюции и естественного отбора в животном и растительном мире. В течение своей прославленной карьеры он разработал и популяризировал множество полезных статистических инструментов, которыми мы пользуемся до сих пор.

Фишер использовал разработанные им методики, чтобы объяснить такие процессы в биологии, как доминирование, мутации и генетические отклонения. Те же инструменты мы можем применить сегодня для оптимизации и улучшения контента веб-ресурсов. Тот факт, что эти средства анализа могут быть задействованы для работы с предметами, которых на момент их создания даже не существовало, кажется довольно удивительным. Столь же удивительно, что раньше сложнейшие вычисления люди выполняли без калькуляторов или компьютеров.

Для описания результатов статистического эксперимента как имеющих высокую вероятность оказаться истиной Фишер использовал слово «значимость» (от англ. significance).

Также одной из наиболее интересных разработок Фишера можно назвать гипотезу «сексуального сына». Согласно этой теории, женщины отдают свое предпочтение неразборчивым в половых связях мужчинам (гулящим), потому что это позволит рожденным от этих мужчин сыновьям иметь такую же предрасположенность и произвести на свет больше своих отпрысков (обращаем внимание, что это всего лишь теория).

Но никто, даже гениальные ученые, не застрахованы от совершения ошибок. Огрехи Фишера досаждают специалистам и по сей день. Но помните слова Альберта Эйнштейна: «Кто никогда не ошибался, тот не создавал ничего нового».

Прежде чем перейти к следующему пункту, запомните: статистическая значимость — это ситуация, когда разница в результатах при проведении тестирования настолько велика, что эту разницу нельзя объяснить влиянием случайных факторов.

Какова ваша гипотеза?

Чтобы понять, что значит «статистическая значимость», сначала нужно разобраться с тем, что такое «проверка гипотез», поскольку два этих термина тесно переплетаются.
Гипотеза — это всего лишь теория. Как только вы разработаете какую-либо теорию, вам будет необходимо установить порядок сбора достаточного количества доказательств и, собственно, собрать эти доказательства. Существует два типа гипотез.

Яблоки или апельсины — что лучше?

Нулевая гипотеза

Как правило, именно в этом месте многие испытывают трудности. Нужно иметь в виду, что нулевая гипотеза — это не то, что нужно доказать, как, например, вы доказываете, что определенное изменение на сайте приведет к повышению конверсии, а наоборот. Нулевая гипотеза — это теория, которая гласит, что при внесении каких-либо изменений на сайт ничего не произойдет. И цель исследователя — опровергнуть эту теорию, а не доказать.

Если обратиться к опыту раскрытия преступлений, где следователи также строят гипотезы в отношении того, кто является преступником, нулевая гипотеза принимает вид так называемой презумпции невиновности, концепта, согласно которому обвиняемый считается невиновным до тех пор, пока его вина не будет доказана в суде.

Если нулевая гипотеза заключается в том, что два объекта равны в своих свойствах, а вы пытаетесь доказать, что один из них все же лучше (например, A лучше B), вам нужно отказаться от нулевой гипотезы в пользу альтернативной. Например, вы сравниваете между собой тот или иной инструмент для оптимизации конверсии. В нулевой гипотезе они оба оказывают на объект воздействия одинаковый эффект (или не оказывают никакого эффекта). В альтернативной — эффект от одного из них лучше.

Ваша альтернативная гипотеза может содержать числовое значение, например, B - A > 20%. В таком случае нулевая гипотеза и альтернативная могут принять следующий вид:

Другое название для альтернативной гипотезы — это исследовательская гипотеза, поскольку исследователь всегда заинтересован в доказательстве именно этой гипотезы.

Статистическая значимость и значение «p»

Вновь вернемся к Рональду Фишеру и его понятию о статистической значимости.

Теперь, когда у вас есть нулевая гипотеза и альтернативная, как вы можете доказать одно и опровергнуть другое?

Поскольку статистические данные по самой своей природе предполагают изучение определенной совокупности (выборки), вы никогда не можете быть на 100% уверены в полученных результатах. Наглядный пример: зачастую результаты выборов расходятся с результатами предварительных опросов и даже эксит-пулов.

Доктор Фишер хотел создать определитель (dividing line), который позволял бы понять, удался ли ваш эксперимент или нет. Так и появился индекс достоверности. Достоверность — это тот уровень, который мы принимаем для того, чтобы сказать, что мы считаем «значимым», а что нет. Если «p», индекс достоверности, равен 0,05 или меньше, то результаты достоверны.

Не волнуйтесь, в действительности все не так запутано, как кажется.

Распределение вероятностей Гаусса. По краям — менее вероятные значения переменной, в центре — наиболее вероятные. P-показатель (закрашенная зеленым область) — это вероятность наблюдаемого результата, возникающего случайно.

Нормальное распределение вероятностей (распределение Гаусса) — это представление всех возможных значений некой переменной на графике (на рисунке выше) и их частот. Если вы проведете свое исследование правильно, а затем расположите все полученные ответы на графике, вы получите именно такое распределение. Согласно нормальному распределению, вы получите большой процент похожих ответов, а оставшиеся варианты разместятся по краям графика (так называемые «хвосты»). Такое распределение величин часто встречается в природе, поэтому оно и носит название «нормального».

Используя уравнение на основе вашей выборки и результатов теста, вы можете вычислить то, что называется «тестовой статистикой», которая укажет, насколько отклонились полученные результаты. Она также подскажет, насколько близко вы к тому, чтобы нулевая гипотеза оказалась верной.

Чтобы не забивать свою голову, используйте онлайн-калькуляторы для вычисления статистической значимости:

Один из примеров таких калькуляторов

Буква «p» обозначает вероятность того, что нулевая гипотеза верна. Если число будет небольшим, это укажет на разницу между тестовыми группами, тогда как нулевая гипотеза будет заключаться в том, что они одинаковы. Графически это будет выглядеть так, что ваша тестовая статистика окажется ближе к одному из хвостов вашего колоколообразного распределения.

Доктор Фишер решил установить порог достоверности результатов на уровне p ≤ 0,05. Однако и это утверждение спорное, поскольку приводит к двум затруднениям:

1. Во-первых, тот факт, что вы доказали несостоятельность нулевой гипотезы, не означает, что вы доказали альтернативную гипотезу. Вся эта значимость всего лишь значит, что вы не можете доказать ни A, ни B.

2. Во-вторых, если p-показатель будет равен 0,049, это будет означать, что вероятность нулевой гипотезы составит 4,9%. Это может означать, что в одно и то же время результаты ваших тестов могут быть одновременно и достоверными, и ошибочными.

Вы можете использовать p-показатель, а можете отказаться от него, но тогда вам будет необходимо в каждом отдельном случае высчитывать вероятность осуществления нулевой гипотезы и решать, достаточно ли она большая, чтобы не вносить тех изменений, которые вы планировали и тестировали.

Наиболее распространенный сценарий проведения статистического теста сегодня — это установление порога значимости p ≤ 0,05 до запуска самого теста. Только не забудьте внимательно изучить p-значение при проверке результатов.

Ошибки 1 и 2

Прошло так много времени, что ошибки, которые могут возникнуть при использовании показателя статистической значимости, даже получили собственные имена.

Ошибка 1 (Type 1 Errors)

Как было упомянуто выше, p-значение, равное 0,05, означает: вероятность того, что нулевая гипотеза окажется верной, равняется 5%. Если вы откажетесь от нее, вы совершите ошибку под номером 1. Результаты говорят, что ваш новый веб-сайт повысил показатели конверсии, но существует 5%-ная вероятность, что это не так.

Ошибка 2 (Type 2 Errors)

Эта ошибка является противоположной ошибке 1: вы принимаете нулевую гипотезу, в то время как она является ложной. К примеру, результаты тестов говорят вам, что внесенные изменения в сайт не принесли никаких улучшений, тогда как изменения были. Как итог: вы упускаете возможность повысить свои показатели.

Такая ошибка распространена в тестах с недостаточным размером выборки, поэтому помните: чем больше выборка, тем достовернее результат.

Заключение

Пожалуй, ни один термин среди исследователей не пользуется такой популярностью, как статистическая значимость. Когда результаты тестов не признаются статистически значимыми, последствия бывают самые разные: от роста показателя конверсии до краха компании.

И раз уж маркетологи используют этот термин при оптимизации своих ресурсов, нужно знать, что же он означает на самом деле. Условия проведения тестов могут меняться, но размер выборки и критерий успеха важен всегда. Помните об этом.

Если действовать не будешь, ни к чему ума палата. (Шота Руставели)

Основные термины и понятия медицинской статистики

В данной статье мы приведем некоторые ключевые понятия статистики, актуальные при проведении медицинских исследований. Более подробно термины разбираются в соответствующих статьях.

Вариация

Определение. Степень рассеяния данных (значений признака) по области значений

Вероятность

Определение . Вероятность(probability) - степень возможности проявления какого - либо определённого события в тех или иных условиях.

Пример. Поясним определение термина на предложении «Вероятность выздоровления при применении лекарственного препарата Aримидекс равна 70%». Событием является «выздоровление больного», условием «больной принимает Аримидекс», степенью возможности - 70% (грубо говоря, из 100 человек, принимающих Аримидекс, выздоравливают 70).

Кумулятивная вероятность

Определение. Кумулятивная вероятность выживания (Cumulative Probability of surviving) в момент времени t - это то же самое, что доля выживших пациентов к этому моменту времени.

Пример. Если говорится, что кумулятивная вероятность выживания после проведения пятилетнего курса лечения равна 0.7, то это значит, что из рассматриваемой группы пациентов в живых осталось 70% от начального количества, а 30% умерло. Другими словами, из каждой сотни человек 30 умерло в течение первых 5 лет.

Время до события

Определение. Время до события - это время, выраженное в некоторых единицах, прошедшее с некоторого начального момента времени до наступления некоторого события.

Пояснение. В качестве единиц времени в медицинских исследованиях выступают дни, месяцы и годы.

Типичные примеры начальных моментов времени:

    начало наблюдения за пациентом

    проведение хирургического лечения

Типичные примеры рассматриваемых событий:

    прогрессирование болезни

    возникновение рецидива

    смерть пациента

Выборка

Определение. Часть популяции, полученная путем отбора.

По результатам анализа выборки делают выводы о всей популяции, что правомерно только в случае, если отбор был случайным. Поскольку случайный отбор из популяции осуществить практически невозможно, следует стремиться к тому, чтобы выборка была по крайней мере репрезентативна по отношению к популяции.

Зависимые и независимые выборки

Определение. Выборки, в которые объекты исследования набирались независимо друг от друга. Альтернатива независимым выборкам - зависимые (связные, парные) выборки.

Гипотеза

Двусторонняя и односторонняя гипотезы

Сначала поясним применение термина гипотеза в статистике.

Цель большинства исследований - проверка истинности некоторого утверждения. Целью тестирования лекарственных препараторов чаще всего является проверка гипотезы, что одно лекарство эффективнее другого (например, Аримидекс эффективнее Тамоксифена).

Для предания строгости исследования, проверяемое утверждение выражают математически. Например, если А - это количество лет, которое проживёт пациент, принимающий Аримидекс, а Т -это количество лет, которое проживёт пациент, принимающий Тамоксифен, то проверяемую гипотезу можно записать как А>Т.

Определение. Гипотеза называется двусторонней (2-sided), если она состоит в равенстве двух величин.

Пример двусторонней гипотезы: A=T.

Определение. Гипотеза называется односторонней (1-sided),если она состоит в неравенстве двух величин.

Примеры односторонних гипотез:

Дихотомические (бинарные) данные

Определение. Данные, выражаемые только двумя допустимыми альтернативными значениями

Пример: Пациент «здоров» - «болен». Отек "есть" - "нет".

Доверительный интервал

Определение. Доверительный интервал (confidence interval) для некоторой величины - это диапазон вокруг значения величины, в котором находится истинное значение этой величины (с определенным уровнем доверия).

Пример. Пусть исследуемой величиной является количество пациентов в год. В среднем их количество равно 500, а 95% -доверительный интервал - (350, 900). Это означает, что, скорее всего (с вероятностью 95%), в течение года в клинику обратятся не менее 350 и не более 900 человек.

Обозначение. Очень часто используются сокращение: ДИ 95 % (CI 95%) - это доверительный интервал с уровнем доверия 95%.

Достоверность, статистическая значимость (P - уровень)

Определение. Статистическая значимость результата - это мера уверенности в его "истинности".

Любое исследование проходит на основе лишь части объектов. Исследование эффективности лекарственного препарата проводится на основе не вообще всех больных на планете, а лишь некоторой группы пациентов (провести анализ на основе всех больных просто невозможно).

Предположим, что в результате анализа был сделан некоторый вывод (например, использование в качестве адекватной терапии препарата Аримидекс в 2 раза эффективнее, чем препарата Тамоксифен).

Вопрос, который необходимо при этом задавать: "Насколько можно доверять этому результату?".

Представьте, что мы проводили исследование на основе только двух пациентов. Конечно же, в этом случае к результатам нужно относиться с опасением. Если же были обследовано большое количество больных (численное значение «большого количества» зависит от ситуации), то сделанным выводам уже можно доверять.

Так вот, степень доверия и определяется значением p-уровня (p-value).

Более высокий p- уровень соответствует более низкому уровню доверия к результатам, полученным при анализе выборки. Например, p- уровень, равный 0.05 (5%) показывает, что сделанный при анализе некоторой группы вывод является лишь случайной особенностью этих объектов с вероятностью только 5%.

Другими словами, с очень большой вероятностью (95%) вывод можно распространить на все объекты.

Во многих исследованиях 5% рассматривается как приемлемое значение p-уровня. Это значит, что если, например, p= 0.01, то результатам доверять можно, а если p=0.06, то нельзя.

Исследование

Проспективное исследование - это исследование, в котором выборки выделяются на основе исходного фактора, а в выборках анализируется некоторый результирующий фактор.

Ретроспективное исследование - это исследование, в котором выборки выделяются на основе результирующего фактора, а в выборках анализируется некоторый исходный фактор.

Пример. Исходный фактор - беременная женщина моложе/старше 20 лет. Результирующий фактор - ребёнок легче/тяжелее 2,5 кг. Анализируем, зависит ли вес ребёнка от возраста матери.

Если мы набираем 2 выборки, в одной - матери моложе 20 лет, в другой - старше, а затем анализируем массу детей в каждой группе, то это проспективное исследование.

Если мы набираем 2 выборки, в одной - матери, родившие детей легче 2,5 кг, в другой - тяжелее, а затем анализируем возраст матерей в каждой группе, то это ретроспективное исследование (естественно, такое исследование можно провести, только когда опыт закончен, т.е. все дети родились).

Исход

Определение. Клинически значимое явление, лабораторный показатель или признак, который служит объектом интереса исследователя. При проведении клинических испытаний исходы служат критериями оценки эффективности лечебного или профилактического воздействия.

Клиническая эпидемиология

Определение. Наука, позволяющая осуществлять прогнозирование того или иного исхода для каждого конкретного больного на основании изучения клинического течения болезни в аналогичных случаях с использованием строгих научных методов изучения больных для обеспечения точности прогнозов.

Когорта

Определение. Группа участников исследования, объединенных каким-либо общим признаком в момент ее формирования и исследуемых на протяжении длительного периода времени.

Контроль

Контроль исторический

Определение. Контрольная группа, сформированная и обследованная в период, предшествующий исследованию.

Контроль параллельный

Определение. Контрольная группа, формируемая одновременно с формированием основной группы.

Корреляция

Определение. Статистическая связь двух признаков (количественных или порядковых), показывающая, что большему значению одного признака в определенной части случаев соответствует большее - в случае положительной (прямой) корреляции - значение другого признака или меньшее значение - в случае отрицательной (обратной) корреляции.

Пример. Между уровнем тромбоцитов и лейкоцитов в крови пациента обнаружена значимая корреляция. Коэффициент корреляции равен 0,76.

Коэффициент риска (КР)

Определение. Коэффициент риска (hazard ratio) - это отношение вероятности наступления некоторого («нехорошего») события для первой группы объектов к вероятности наступления этого же события для второй группы объектов.

Пример. Если вероятность появления рака лёгких у некурящих равна 20%, а у курильщиков - 100%, то КР будет равен одной пятой. В этом примере первой группой объектов являются некурящие люди, второй группой - курящие, а в качестве «нехорошего» события рассматривается возникновение рака лёгких.

Очевидно, что:

1) если КР=1, то вероятность наступления события в группах одинаковая

2) если КР>1, то событие чаще происходит с объектами из первой группы, чем из второй

3) если КР<1, то событие чаще происходит с объектами из второй группы, чем из первой

Мета-анализ

Определение. С татистический анализ, обобщающий результаты нескольких исследований, исследующих одну и ту же проблему (обычно эффективность методов лечения, профилактики, диагностики). Объединение исследований обеспечивает большую выборку для анализа и большую статистическую мощность объединяемых исследований. Используется для повышения доказательности или уверенности в заключении об эффективности исследуемого метода.

Метод Каплана - Мейера (Множительные оценки Каплана - Мейера)

Этот метод был придуман статистиками Е.Л.Капланом и Полем Мейером.

Метод используется для вычисления различных величин, связанных с временем наблюдения за пациентом. Примеры таких величин:

    вероятность выздоровления в течении одного года при применении лекарственного препарата

    шанс возникновения рецидива после операции в течении трёх лет после операции

    кумулятивная вероятность выживания в течение пяти лет среди пациентов с раком простаты при ампутации органа

Поясним преимущества использования метода Каплана - Мейера.

Значение величин при «обычном» анализе (не использующем метод Каплана-Мейера) рассчитываются на основе разбиения рассматриваемого временного интервала на промежутки.

Например, если мы исследуем вероятность смерти пациента в течение 5 лет, то временной интервал может быть разделён как на 5 частей (менее 1 года, 1-2 года, 2-3 года, 3-4 года, 4-5 лет), так и на 10 (по полгода каждый), или на другое количество интервалов. Результаты же при разных разбиениях получатся разные.

Выбор наиболее подходящего разбиения - непростая задача.

Оценки значений величин, полученных по методу Каплана- Мейера не зависят от разбиения времени наблюдения на интервалы, а зависят только от времени жизни каждого отдельного пациента.

Поэтому исследователю проще проводить анализ, да и результаты нередко оказываются качественней результатов «обычного» анализа.

Кривая Каплана -Мейера (Kaplan - Meier curve)- это график кривой выживаемости, полученной по методу Каплана-Мейера.

Модель Кокса

Эта модель была придумана сэром Дэвидом Роксби Коксом (р.1924), известным английским статистиком, автором более 300 статей и книг.

Модель Кокса используется в ситуациях, когда исследуемые при анализе выживаемости величины зависят от функций времени. Например, вероятность возникновения рецидива через t лет (t=1,2,…), может зависеть от логарифма времени log(t).

Важным достоинством метода, предложенного Коксом, является применимость этого метода в большом количестве ситуаций (модель не накладывает жестких ограничений на природу или форму распределения вероятностей).

На основе модели Кокса можно проводить анализ (называемый анализом Кокса (Cox analysis)), результатом проведения которого является значение коэффициента риска и доверительного интервала для коэффициента риска.

Непараметрические методы статистики

Определение. Класс статистических методов, которые используются главным образом для анализа количественных данных, не образующих нормальное распределение, а также для анализа качественных данных.

Пример. Для выявления значимости различий систолического давления пациентов в зависимости от типа лечения воспользуемся непараметрическим критерием Манна-Уитни.

Признак (переменная)

Определение. Х арактеристика объекта исследования (наблюдения). Различают качественные и количественные признаки.

Рандомизация

Определение. Способ случайного распределения объектов исследования в основную и контрольную группы с использованием специальных средств (таблиц или счетчика случайных чисел, подбрасывания монеты и других способов случайного назначения номера группы включаемому наблюдению). С помощью рандомизации сводятся к минимуму различия между группами по известным и неизвестным признакам, потенциально влияющим на изучаемый исход.

Риск

Атрибутивный - дополнительный риск возникновения неблагоприятного исхода (например, заболевания) в связи с наличием определенной характеристики (фактора риска) у объекта исследования. Это часть риска развития болезни, которая связана с данным фактором риска, объясняется им и может быть устранена, если этот фактор риска устранить.

Относительный риск - отношение риска возникновения неблагоприятного состояния в одной группе к риску этого состояния в другой группе. Используется в проспективных и наблюдательных исследованиях, когда группы формируются заранее, а возникновение исследуемого состояния ещё не произошло.

Скользящий экзамен

Определение. Метод проверки устойчивости, надежности, работоспособности (валидности) статистической модели путем поочередного удаления наблюдений и пересчета модели. Чем более сходны полученные модели, тем более устойчива, надежна модель.

Событие

Определение. Клинический исход, наблюдаемый в исследовании, например возникновение осложнения, рецидива, наступление выздоровления, смерти.

Стратификация

Определение. М етод формирования выборки, при котором совокупность всех участников, соответствующих критериям включения в исследование, сначала разделяется на группы (страты) на основе одной или нескольких характеристик (обычно пола, возраста), потенциально влияющих на изучаемый исход, а затем из каждой из этих групп (страт) независимо проводится набор участников в экспериментальную и контрольную группы. Это позволяет исследователю соблюдать баланс важных характеристик между экспериментальной и контрольной группами.

Таблица сопряженности

Определение. Таблица абсолютных частот (количества) наблюдений, столбцы которой соответствуют значениям одного признака, а строки - значениям другого признака (в случае двумерной таблицы сопряженности). Значения абсолютных частот располагаются в клетках на пересечении рядов и колонок.

Приведем пример таблицы сопряженности. Операция на аневризме была сделана 194 пациентам. Известен показатель выраженности отека у пациентов перед операцией.

Отек\ Исход

нет отека 20 6 26
умеренный отек 27 15 42
выраженный отек 8 21 29
m j 55 42 194

Таким образом, из 26 пациентов, не имеющих отека, после операции выжило 20 пациентов, умерло - 6 пациентов. Из 42 пациентов, имеющих умеренный отек выжило 27 пациентов, умерло - 15 и т.д.

Критерий хи-квадрат для таблиц сопряженности

Для определения значимости (достоверности) различий одного признака в зависимости от другого (например, исхода операции в зависимости от выраженности отека) применяется критерий хи-квадрат для таблиц сопряженности:


Шанс

Пусть вероятность некоторого события равна p. Тогда вероятность того, что событие не произойдёт равна 1-p.

Например, если вероятность того, что больной останется жив спустя пять лет равна 0.8 (80%), то вероятность того, что он за этот временной промежуток умрёт равна 0.2 (20%).

Определение. Шанс - это отношение вероятности того, что события произойдёт к вероятности того, что событие не произойдёт.

Пример. В нашем примере (про больного) шанс равен 4, так как 0.8/0.2=4

Таким образом, вероятность выздоровления в 4 раза больше вероятности смерти.

Интерпретация значения величины.

1) Если Шанс=1, то вероятность наступления события равна вероятности того, что событие не произойдёт;

2) если Шанс >1, то вероятность наступления события больше вероятности того, что событие не произойдёт;

3) если Шанс <1, то вероятность наступления события меньше вероятности того, что событие не произойдёт.

Отношение шансов

Определение. Отношение шансов (odds ratio) - это отношение шансов для первой группы объектов к отношению шансов для второй группы объектов.

Пример. Допустим, что некоторое лечение проходят и мужчины, и женщины.

Вероятность того, что больной мужского пола останется жив спустя пять лет равна 0.6 (60%); вероятность того, что он за этот временной промежуток умрёт равна 0.4 (40%).

Аналогичные вероятности для женщин равны 0.8 и 0.2.

Отношение шансов в этом примере равно

Интерпретация значения величины.

1) Если отношение шансов =1, то шанс для первой группы равен шансу для второй группы

2) Если отношение шансов >1, то шанс для первой группы больше шанса для второй группы

3) Если отношение шансов <1, то шанс для первой группы меньше шанса для второй группы

Статистика давно уже стала неотъемлемой частью жизни. С ней люди сталкиваются всюду. На основе статистики делаются выводы о том, где и какие заболевания распространены, что более востребовано в конкретном регионе или среди определенного слоя населения. На основываются даже построения политических программ кандидатов в органы власти. Ими же пользуются и торговые сети при закупке товаров, а производители руководствуются этими данными в своих предложениях.

Статистика играет важную роль в жизни общества и влияет на каждого его отдельного члена даже в мелочах. Например, если по , большинство людей предпочитают темные цвета в одежде в конкретном городе или регионе, то найти яркий желтый плащ с цветочным принтом в местных торговых точках будет крайне затруднительно. Но из каких величин складываются эти данные, оказывающие такое влияние? К примеру, что представляет собой «статистическая значимость»? Что именно понимается под этим определением?

Что это?

Статистика как наука складывается из сочетания разных величин и понятий. Одним из них и является понятие «статистическая значимость». Так называется значение переменных величин, вероятность появления других показателей в которых ничтожно мала.

К примеру, 9 из 10 человек надевают на ноги резиновую обувь во время утренней прогулки за грибами в осенний лес после дождливой ночи. Вероятность того что в какой-то момент 8 из них обуются в парусиновые мокасины - ничтожно мала. Таким образом, в данном конкретном примере число 9 является величиной, которая и называется «статистическая значимость».

Соответственно, если развивать далее приведенный практический пример, обувные магазины закупают к концу летнего сезона резиновые сапожки в большом количестве, чем в другое время года. Так, величина статистического значения оказывает влияние на обычную жизнь.

Разумеется, в сложных подсчетах, допустим, при прогнозе распространения вирусов, учитывается большое число переменных. Но сама суть определения значимого показателя статистических данных - аналогична, вне зависимости от сложности подсчетов и количества непостоянных величин.

Как вычисляют?

Используются при вычислении значения показателя «статистическая значимость» уравнения. То есть можно утверждать, что в этом случае все решает математика. Самым простым вариантом вычисления является цепь математических действий, в которой участвуют следующие параметры:

  • два типа результатов, полученных при опросах или изучении объективных данных, к примеру, сумм на которые совершаются покупки, обозначаемые а и b;
  • показатель для обеих групп - n;
  • значение доли объединенной выборки - p;
  • понятие «стандартная ошибка» - SE.

Следующим этапом определяется общий тестовый показатель - t, его значение сравнивается с числом 1,96. 1,96 - это усредненное значение, передающее диапазон в 95 %, согласно функции t-распределения Стьюдента.

Часто возникает вопрос о том, в чем отличие значений n и p. Этот нюанс просто прояснить при помощи примера. Допустим, вычисляется статистическая значимость лояльности к какому-либо товару или бренду мужчин и женщин.

В этом случае за буквенными обозначениями будет стоять следующее:

  • n - число опрошенных;
  • p - число довольных продуктом.

Численность опрошенных женщин в этом случае будет обозначено, как n1. Соответственно, мужчин - n2. То же значение будут иметь цифры «1» и «2» у символа p.

Сравнение тестового показателя с усредненными значениями расчетных таблиц Стьюдента и становится тем, что называется «статистическая значимость».

Что понимается под проверкой?

Результаты любого математического вычисления всегда можно проверить, этому учат детей еще в начальных классах. Логично предположить, что раз статистические показатели определяются при помощи цепи вычислений, то и проверяются.

Однако проверка статистической значимости - не только математика. Статистика имеет дело с большим количеством переменных величин и различных вероятностей, далеко не всегда поддающихся расчету. То есть если вернутся к приведенному в начале статьи примеру с резиновой обувью, то логичное построение статистических данных, на которые станут опираться закупщики товаров для магазинов, может быть нарушено сухой и жаркой погодой, которая не типична для осени. В результате этого явления число людей, приобретающих резиновые сапоги, снизится, а торговые точки потерпят убытки. Предусмотреть погодную аномалию математическая формула, разумеется, не в состоянии. Этот момент называется - «ошибка».

Вот как раз вероятность таких ошибок и учитывает проверка уровня вычисленной значимости. В ней учитываются как вычисленные показатели, так и принятые уровни значимости, а также величины, условно называемые гипотезами.

Что такое уровень значимости?

Понятие «уровень» входит в основные критерии статистической значимости. Используется оно в прикладной и практической статистике. Это своего рода величина, учитывающая вероятность возможных отклонений или ошибок.

Уровень основывается на выявлении различий в готовых выборках, позволяет установить их существенность либо же, наоборот, случайность. У этого понятия есть не только цифровые значения, но и их своеобразные расшифровки. Они объясняют то, как нужно понимать значение, а сам уровень определяется сравнением результата с усредненным индексом, это и выявляет степень достоверности различий.

Таким образом, можно представить понятие уровня просто - это показатель допустимой, вероятной погрешности или же ошибки в сделанных из полученных статистических данных выводах.

Какие уровни значимости используются?

Статистическая значимость коэффициентов вероятности допущенной ошибки на практике отталкивается от трех базовых уровней.

Первым уровнем считается порог, при котором значение равно 5 %. То есть вероятность погрешности не превышает уровня значимости в 5 %. Это означает, что уверенность в безупречности и безошибочности выводов, сделанных на основе данных статистических исследований, составляет 95 %.

Вторым уровнем является порог в 1 %. Соответственно, эта цифра означает, что руководствоваться полученными при статистических расчетах данными можно с уверенностью в 99 %.

Третий уровень - 0,1 %. При таком значении вероятность наличия ошибки равна доле процента, то есть погрешности практически исключаются.

Что такое гипотеза в статистике?

Ошибки как понятие разделяются по двум направлениям, касающимся принятия или же отклонения нулевой гипотезы. Гипотеза - это понятие, за которым скрывается, согласно определению, набор иных данных или же утверждений. То есть описание вероятностного распределения чего-либо, относящегося к предмету статистического учета.

Гипотез при простых расчетах бывает две - нулевая и альтернативная. Разница между ними в том, что нулевая гипотеза берет за основу представление об отсутствии принципиальных отличий между участвующими в определении статистической значимости выборками, а альтернативная ей полностью противоположна. То есть альтернативная гипотеза основана на наличии весомой разницы в данных выборок.

Какими бывают ошибки?

Ошибки как понятие в статистике находятся в прямой зависимости от принятия за истинную той или иной гипотезы. Их можно разделить на два направления или же типа:

  • первый тип обусловлен принятием нулевой гипотезы, оказавшейся неверной;
  • второй - вызван следованием альтернативной.

Первый тип ошибок называется ложноположительным и встречается достаточно часто во всех сферах, где используются статистические данные. Соответственно, ошибка второго типа называется ложноотрицательной.

Для чего нужна регрессия в статистике?

Статистическая значимость регрессии в том, что с ее помощью можно установить, насколько соответствует реальности вычисленная на основе данных модель различных зависимостей; позволяет выявить достаточность или же нехватку факторов для учета и выводов.

Определяется регрессивное значение с помощью сравнения результатов с перечисленными в таблицах Фишера данными. Или же при помощи дисперсионного анализа. Важное значение показатели регрессии имеют при сложных статистических исследованиях и расчетах, в которых участвует большое количество переменных величин, случайных данных и вероятных изменений.

Статистическая значимость

Результаты, полученные с помощью определенной процедуры исследования, называют статистически значимыми , если вероятность их случайного появления очень мала. Эту концепцию можно проиллюстрировать на примере кидания монеты. Предположим, что монету подбросили 30 раз; 17 раз выпал «орел» и 13 раз выпала «решка». Является ли значимым отклонение этого результата от ожидаемого (15 выпадений «орла» и 15 - «решки»), или это отклонение случайно? Чтобы ответить на этот вопрос, можно, например, много раз кидать ту же монету по 30 раз подряд, и при этом отмечать, сколько раз повторится соотношение «орлов» и «решек», равное 17:13. Статистический анализ избавляет нас от этого утомительного процесса. С его помощью после первых 30 киданий монеты можно произвести оценку возможного числа случайных выпадений 17 «орлов» и 13 «решек». Такая оценка называется вероятностным утверждением.

В научной литературе по индустриально-организационной психологии вероятностное утверждение в математической форме обозначается выражением р (вероятность) < (менее) 0,05 (5 %), которое следует читать как «вероятность менее 5 %». В примере с киданием монеты это утверждение будет означать, что если исследователь проведет 100 опытов, каждый раз кидая монету по 30 раз, то он может ожидать случайного выпадения комбинации из 17 «орлов» и 13 «решек» менее, чем в 5 опытах. Этот результат будет сочтен статистически значимым, поскольку в индустриально-организационной психологии уже давно приняты стандарты статистической значимости 0,05 и 0,01 (р < 0,01). Этот факт важен для понимания литературы, но не следует считать, что он говорит о бессмысленности проведения наблюдений, не соответствующих этим стандартам. Так называемые незначимые результаты исследований (наблюдения, которые можно получить случайно более одного или пяти раз из 100) могут быть весьма полезными для выявления тенденций и как руководство к будущим исследованиям.

Необходимо также заметить, что не все психологи соглашаются с традиционными стандартами и процедурами (например, Cohen, 1994; Sauley & Bedeian, 1989). Вопросы, связанные с измерениями, сами по себе являются главной темой работы многих исследователей, изучающих точность методов измерений и предпосылки, которые лежат в основе существующих методов и стандартов, а также разрабатывают новые медики и инструменты. Может быть, когда-нибудь в будущем исследования в этой власти приведут к изменению традиционных стандартов оценки статистической значимости, и эти изменения завоюют всеобщее признание. (Пятое отделение Американской психологической ассоциации объединяет психологов, которые специализируются на изучении оценок, измерений и статистики.)

В отчетах об исследованиях вероятностное утверждение, такое как р < 0,05, связано некоторой статистикой, то есть числом, которое получено в результате проведения определенного набора математических вычислительных процедур. Вероятностное подтверждение получают путем сравнения этой статистики с данными из специальных таблиц, которые публикуются для этой цели. В индустриально-организационных психологических исследованиях часто встречаются такие статистики, как r, F, t, г> (читается «хи квадрат») и R (читается «множественный R»). В каждом случае статистику (одно число), полученную в результате анализа серии наблюдений, можно сравнить числами из опубликованной таблицы. После этого можно сформулировать вероятностное утверждение о вероятности случайного получения этого числа, то есть сделать вывод о значимости наблюдений.

Для понимания исследований, описанных в этой книге, достаточно иметь ясное представление о концепции статистической значимости и необязательно знать, как рассчитываются упомянутые выше статистики. Однако было бы полезно обсудить одно предположение, которое лежит в основе всех этих процедур. Это предположение о том, что все наблюдаемые переменные распределяются приблизительно по нормальному закону. Кроме того, при чтении отчетов об индустриально-организационных психологических исследованиях часто встречаются еще три концепции, которые играют важную роль - во-первых, корреляция и корреляционная связь, во-вторых, детерминант/ предсказывающая переменная и «ANOVA» (дисперсионный анализ), в-третьих, группа статистических методов под общим названием «метаанализ».