Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Алкены интересные факты. Изомерия и номенклатура алкенов. Где их можно встретить

Алкены вступают в разнообразные реакции, в которых образуются соединения других классов. Поэтому алкены являются важными интер-медиатами в органическом синтезе. При синтезе многих типов веществ бывает полезно получить вначале алкен и уже его превращать в требуемое соединение.

Все реакции алкенов можно условно разделить на две группы. Одну из них образуют протекающие в две стадии реакции электрофильного присоединения, другую - все прочие реакции. Мы начнем ниже рассмотрение со второй группы реакций.

Гидрирование

Алкены реагируют с газообразным водородом в присутствии катализаторов (как правило, благородных металлов). Два атома водорода присоединяются при этом по двойной связи алкена и образуется алкан. Эта реакция подробно разбиралась в гл. 3. Приведем еще два примера:

Озонолиз

Эта реакция необычна в том отношении, что в ней происходит полный разрыв двойной углерод-углеродной связи и расщепление углеродного скелета молекулы на две части. Алкен обрабатывают озоном, а затем цинковой пылью. В результате молекула алкена расщепляется по двойной связи и образуется две молекулы альдегида и (или) кетона. Из циклоалкенов образуются ациклические соединения с двумя альдегидными (или кетонными) группами:

Например:

Заметьте, что в последних двух примерах при раскрытии кольца циклоалкена образуется одна ациклическая молекула, а не две, как из ациклических алкенов.

Реакция озонолиза используется как для синтеза альдегидов и кетонов, так и для установления строения алкенов. Например, пусть при озонолизе неизвестного алкена образуется смесь двух альдегидов:

В этом случае строение алкена может быть логически установлено следующим образом. Атомы углерода, связанные в молекулах альдегидов двойными связями с атомами кислорода, были в молекуле исходного алкена связаны двойной связью между собой:

Другой пример:

Структура алкена должна быть циклической, поскольку мы должны соединить два конца одной и той же молекулы:

Окисление

Разбавленный водный раствор перманганата калия превращает алкены в диолы (гликоли). В результате этой реакции две гидроксильные группы присоединяются с одной стороны двойной связи (цис- или син-присоединение).

Поэтому из циклоалкенов образуются цис-диолы. В общем виде уравнение реакции выглядит так:

Например:

Наилучшим образом синтез диолов протекает в слабощелочной среде и мягких условиях (невысокая температура и разбавленный раствор перманганата калия). В более жестких условиях (кислый катализ, нагревание) происходит расщепление молекулы по двойной связи и образуются карбоновые кислоты.

Реакция с перманганатом калия используется не только для получения диолов, Но и служит простым тестом, позволяющим легко определять алкены. Раствор перманганата имеет интенсивную фиолетовую окраску. Если в исследуемом образце содержится алкен, то при добавлении к нему нескольких капель раствора перманганата фиолетовая окраска последнего немедленно переходит в коричневую. Такое же изменение окраски вызывают только алкины и альдегиды. Соединения большинства других классов в этих условиях не реагируют. Описанная выше процедура называется пробой Байера. Ниже показано отношение соединений различных классов к пробе Байера: положительная проба (фиолетовая окраска исчезает), отрицательная проба (фиолетовая окраска сохраняется).

Аллильное галогенирование

Если алкены подвергать свободнорадикальному галогенированию, легче всего замещаются на галоген атомы водорода при углеродном атоме, соседствующем с двойной связью. Это положение в молекуле алкена называется аллильным:

Специфическим реагентом для аллильного бромирования является -бромсукцинимид Он представляет собой твердое вещество,

с которым удобно работать в лаборатории, тогда как молекулярный бром - летучая, высокотоксичная и опасная в обращении жидкость При нагревании (иногда необходим катализ пероксидами) N-бромсукцинимид становится источником атомов брома.

Галогенирование идет в аллильное положение, так как промежуточно образующийся при этом аллильный радикал стабильнее, чем любой другой свободный радикал, который может получиться из молекулы алкена. Поэтому именно этот радикал образуется легче других. Повышенная устойчивость аллильного радикала объясняется его резонансной стабилизацией, в результате которой неспаренный электрон оказывается делокализован по двум углеродным атомам. Ниже показан механизм аллильного хлорирования:

Алкены расщепляются озоном с образованием альдегидов и кетонов, что позволяет устанавливать строение алкенов. Алкены подвергаются гидрированию с образованием алканов и окислению с образованием диолов. Кроме зтих реакций с участием двойной связи для алкенов характерно селективное галогенирование в положение, соседнее с двойной связью. Сама двойная связь при этом не затрагивается.

Электр офильное присоединение к алкенам

Реакции электрофильного присоединения, отличаясь друг от друга природой присоединяющихся по двойной связи групп, имеют одинаковый двухстадийный механизм. На первой его стадии электрофильная (обладающая сродством к электрону) частица (например, катион) притягивается -электронным облаком и присоединяется по двойной связи:

В большинстве случаев выполняется правило Марковникова - электрофил присоединяется к наиболее гидрогенизированному концу двойной связи, а нуклеофил к противоположному. Подробнее об этих реакциях идет речь в тех главах, где рассматривается образование соответствующих функциональных групп. Например, присоединение бромоводорода обсуждается в гл. 5 (там, где идет речь о синтезе галогеналканов) присоединение воды рассмотрено в гл. 7 (синтез спиртов). Здесь мы только еще раз подчеркнем роль положительно заряженных частиц, имеющих незаполненную внешнюю электронную оболочку, и их взаимодействия с -электронами. Приведем также несколько примеров:

Алкены реагируют с электрофильными реагентами, которые присоединяются по двойной связи. Реакция протекает в две стадии. Таким путем получают соединения различных классов, например галогеналканы и спирты.

Схема 6-1. Реакции электрофильного присоединения к алкенам

Тема урока: Алкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

  • рассмотреть конкретные химические свойства этилена и общие свойства алкенов;
  • углубить и конкретизировать понятия о?-связи, о механизмах химических реакций;
  • дать первоначальные представления о реакциях полимеризации и строении полимеров;
  • разобрать лабораторные и общие промышленные способы получения алкенов;
  • продолжить формирование умения работать с учебником.

Оборудование: прибор для получения газов, раствор КМnO 4 , этиловый спирт, концентрированная серная кислота, спички, спиртовка, песок, таблицы «Строение молекулы этилена», «Основные химические свойства алкенов», демонстрационные образцы «Полимеры».

ХОД УРОКА

I. Организационный момент

Мы продолжаем изучение гомологического ряда алкенов. Сегодня нам предстоит рассмотреть способы получения, химические свойства и применение алкенов. Мы должны охарактеризовать химические свойства, обусловленные двойной связью, получить первоначальные представления о реакциях полимеризации, рассмотреть лабораторные и промышленные способы получения алкенов.

II. Активизация знаний учащихся

  1. Какие углеводороды называются алкенами?
  1. Каковы особенности их строения?
  1. В каком гибридном состоянии находятся атомы углерода, образующие двойную связь в молекуле алкена?

Итог: алкены отличаются от алканов наличием в молекулах одной двойной связи, которая обуславливает особенности химических свойств алкенов, способов их получения и применения.

III. Изучение нового материала

1. Способы получения алкенов

Составить уравнения реакций, подтверждающих способы получения алкенов

– крекинг алканов C 8 H 18 ––> C 4 H 8 + C 4 H 10 ; (термический крекинг при 400-700 o С)
октан бутен бутан
– дегидрирование алканов C 4 H 10 ––> C 4 H 8 + H 2 ; (t, Ni)
бутан бутен водород
– дегидрогалогенирование галогеналканов C 4 H 9 Cl + KOH ––> C 4 H 8 + KCl + H 2 O;
хлорбутан гидроксид бутен хлорид вода
калия калия
– дегидрогалогенирование дигалогеналканов
– дегидратация спиртов С 2 Н 5 ОН ––> С 2 Н 4 + Н 2 О (при нагревании в присутствии концентрированной серной кислоты)
Запомните! При реакиях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

2. Химические свойства алкенов

Характер углерод – углеродной связи определяет тип химических реакций, в которые вступают органические вещества. Наличие в молекулах этиленовых углеводородов двойной углерод – углеродной связи обуславливает следующие особенности этих соединений:
– наличие двойной связи позволяет отнести алкены к ненасыщенным соединениям. Превращение их в насыщенные возможно только в результате реакций присоединения, что является основной чертой химического поведения олефинов;
– двойная связь представляет собой значительную концентрацию электронной плотности, поэтому реакции присоединения носят электрофильный характер;
– двойная связь состоит из одной - и одной -связи, которая достаточно легко поляризуется.

Уравнения реакций, характеризующих химические свойства алкенов

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Запомни! Возможны следующие механизмы разрыва -связи:

а) если алкены и реагент – неполярные соединения, то -связь разрывается с образованием свободного радикала:

H 2 C = CH 2 + H: H ––> + +

б) если алкен и реагент – полярные соединения, то разрыв -связи приводит к образование ионов:

в) при соединении по месту разрыва -связи реагентов, содержащих в составе молекулы атомы водорода, водород всегда присоединяется к более гидрированному атому углерода (правило Морковникова, 1869 г.).

– реакция полимеризации nCH 2 = CH 2 ––> n – CH 2 – CH 2 –– > (– CH 2 – CH 2 –)n
этен полиэтилен

б) реакция окисления

Лабораторный опыт. Получить этилен и изучить его свойства (инструкция на столах учащихся)

Инструкция по получению этилена и опытов с ним

1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.

– алкены горят светящимся пламенем. (Почему?)

C 2 H 4 + 3O 2 ––> 2CO 2 + 2H 2 O (при полном окислении продуктами реакции являются углекислый газ и вода)

Качественная реакция: «мягкое окисление (в водном растворе)»

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

CH 3 – CH = CH 2 + 4 [O] ––> CH 3 COOH + HCOOH

– каталичесикое окисление

Запомните главное!

1. Непредельные углеводороды активно вступают в реакции присоединения.
2. Реакционная активность алкенов связана с тем, что - связь под действием реагентов легко разрывается.
3. В результате присоединения происходит переход атомов углерода из sp 2 – в sp 3 - гибридное состояние. Продукт реакции имеет предельный характер.
4. При нагревании этилена, пропилена и других алкенов под давление или в присутствии катализатора их отдельные молекулы соединяются в длинные цепочки – полимеры. Полимеры (полиэтилен, полипропилен) имеют большое практическое значение.

3. Применение алкенов (сообщение учащегося по следующему плану).

1 – получение горючего с высоким октановым числом;
2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;
6 – для ускорения созревания плодов;
7 – получение ацетальдегида;
8 – синтетического каучука.

III. Закрепление изученного материала

Домашнее задание: §§ 15, 16, упр. 1, 2, 3 стр. 90, упр. 4, 5 стр. 95.

НЕПРЕДЕЛЬНЫЕ, ИЛИ НЕНАСЫЩЕННЫЕ, УГЛЕВОДОРОДЫ РЯДА ЭТИЛЕНА

(АЛКЕНЫ, ИЛИ ОЛЕФИНЫ)

Алкены , или олефины (от лат. olefiant - масло - старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, - жидкое маслянист вещество.) - алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой C n H 2n

1. Гомологический ряд алкенов

С n H 2 n

алкен

Названия, суффикс ЕН, ИЛЕН

C 2 Н 4

этен , этилен

C 3 H 6

пропен

C 4 H 8

бутен

C 5 H 10

пентен

C 6 H 12

гексен

Гомологи:

С H 2 = CH 2 этен

С H 2 = CH - CH 3 пропен

С H 2 =CH-CH 2 -CH 3 бутен -1

С H 2 =CH-CH 2 -CH 2 - СН 3 пентен -1

2. Физические свойства

Этилен (этен) – бесцветный газ с очень слабым сладковатым запахом, немного легче воздуха, малорастворим в воде.

С 2 – С 4 (газы)

С 5 – С 17 (жидкости)

С 18 – (твёрдые)

· Алкены не растворяются в воде, растворимы в органических растворителях (бензин, бензол и др.)

· Легче воды

· С увеличением Mr температуры плавления и кипения увеличиваются

3. Простейшим алкеном является этилен - C 2 H 4

Структурная и электронная формулы этилена имеют вид:

В молекуле этилена подвергаются гибридизации одна s - и две p -орбитали атомов C (sp 2 -гибридизация).

Таким образом, каждый атом C имеет по три гибридных орбитали и по одной негибридной p -орбитали. Две из гибридных орбиталей атомов C взаимно перекрываются и образуют между атомами C

σ - связь. Остальные четыре гибридных орбитали атомов C перекрываются в той же плоскости с четырьмя s -орбиталями атомов H и также образуют четыре σ - связь. Две негибридные p -орбитали атомов C взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ - связь, т.е. образуется одна П - связь.



По своей природе П - связь резко отличается от σ - связь; П - связь менее прочная вследствие перекрывания электронных облаков вне плоскости молекулы. Под действием реагентов П - связь легко разрывается.

Молекула этилена симметрична; ядра всех атомов расположены в одной плоскости и валентные углы близки к 120°; расстояние между центрами атомов C равно 0,134 нм.

Если атомы соединены двойной связью, то их вращение невозможно без того, чтобы электронные облака П - связь не разомкнулись.

4. Изомерия алкенов

Наряду со структурной изомерией углеродного скелета для алкенов характерны, во-первых, другие разновидности структурной изомерии - изомерия положения кратной связи и межклассовая изомерия .

Во-вторых, в ряду алкенов проявляется пространственная изомерия , связанная с различным положением заместителей относительно двойной связи, вокруг которой невозможно внутримолекулярное вращение.

Структурная изомерия алкенов

1. Изомерия углеродного скелета (начиная с С 4 Н 8):

2. Изомерия положения двойной связи (начиная с С 4 Н 8):

3. Межклассовая изомерия с циклоалканами, начиная с С 3 Н 6:

Пространственная изомерия алкенов

Вращение атомов вокруг двойной связи невозможно без ее разрыва. Это обусловлено особенностями строения p-связи (p-электронное облако сосредоточено над и под плоскостью молекулы). Вследствие жесткой закрепленности атомов поворотная изомерия относительно двойной связи не проявляется. Но становится возможной цис -транс -изомерия.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух пространственных изомеров, отличающихся расположением заместителей относительно плоскости p-связи. Так, в молекуле бутена-2 СН 3 –СН=СН–СН 3 группы СН 3 могут находиться либо по одну сторону от двойной связи в цис -изомере, либо по разные стороны в транс -изомере.

ВНИМАНИЕ! цис-транс - Изомерия не проявляется, если хотя бы один из атомов С при двойной связи имеет 2 одинаковых заместителя.

Например,

бутен-1 СН 2 =СН–СН 2 –СН 3 не имеет цис - и транс -изомеров, т.к. 1-й атом С связан с двумя одинаковыми атомами Н.

Изомеры цис - и транс - отличаются не только физическими

,

но и химическими свойствами, т.к. сближение или удаление частей молекулы друг от друга в пространстве способствует или препятствует химическому взаимодействию.

Иногда цис-транс -изомерию не совсем точно называют геометрической изомерией . Неточность состоит в том, что все пространственные изомеры различаются своей геометрией, а не только цис - и транс -.

5. Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:


Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

(Н 2 С=СН-)винил или этенил

(Н 2 С=CН-СН 2) аллил

Содержащие пи-связь - это непредельные углеводороды. Они являются производными алканов, в молекулах которых произошло отщепление двух атомов водорода. Образовавшиеся свободные валентности формируют новый тип связи, которая располагается перпендикулярно плоскости молекулы. Так возникает новая группа соединений - алкены. Физические свойства, получение и применение веществ этого класса в быту и промышленности мы рассмотрим в этой статье.

Гомологический ряд этилена

Общая формула всех соединений, называемых алкенами, отражающая их качественный и количественный состав, - это C n H 2 n . Названия углеводородов по систематической номенклатуре имеют следующий вид: в термине соответствующего алкана изменяется суффикс с -ан на -ен, например: этан - этен, пропан - пропен и т. д. В некоторых источниках можно встретить еще одно название соединений этого класса - олефины. Далее мы изучим процесс образования двойной связи и физические свойства алкенов, а также определим их зависимость от строения молекулы.

Как образуется двойная связь

Электронную природу пи-связи на примере этилена можно представить следующим образом: атомы карбона в его молекуле находятся в форме sp 2 -гибридизации. В этом случае формируется сигма-связь. Еще две гибридные орбитали - по одной от атомов углерода, формируют простые сигма-связи с водородными атомами. Два оставшихся свободных гибридных облака атомов карбона перекрываются над и под плоскостью молекулы - образуется пи-связь. Именно она определяет физические и химические свойства алкенов, речь о которых пойдет далее.

Пространственная изомерия

Соединения, имеющие один и тот же количественный и качественный состав молекул, но различное пространственное строение, называются изомерами. Изомерия встречается в группе веществ, называемых органическими. На характеристику олефинов большое влияние оказывает явление оптической изомерии. Она выражается в том, что гомологи этилена, содержащие у каждого из двух углеродных атомов при двойной связи различные радикалы или заместители, могут встречаться в форме двух оптических изомеров. Они отличаются друг от друга положением заместителей в пространстве относительно плоскости двойной связи. Физические свойства алкенов в этом случае также будут разными. Например, это касается температур кипения и плавления веществ. Так, олефины неразветвленного строения углеродного скелета имеют более высокие температуры кипения, чем соединения-изомеры. Также температуры кипения цис-изомеров алкенов выше, чем транс-изомеров. В отношении температур плавления картина противоположная.

Сравнительная характеристика физических свойств этилена и его гомологов

Первые три представителя олефинов являются газообразными соединениями, затем, начиная с пентена C 5 H 10 и до алкена с формулой C 17 H 34 , - жидкости, а далее идут твердые вещества. У гомологов этена прослеживается следующая тенденция: температуры кипения соединений снижаются. Например, у этилена этот показатель равен -169,1°C, а у пропилена -187,6°C. Зато температуры кипения с увеличением молекулярной массы повышаются. Так, у этилена она равна -103,7°C, а у пропена -47,7°C. Подводя итог сказанному, можно сделать вывод, звучащий кратко: физические свойства алкенов зависят от их молекулярной массы. С ее увеличением изменяется агрегатное состояние соединений в направлении: газ - жидкость - твердое вещество, а также снижается температура плавления, а температуры кипения возрастают.

Характеристика этена

Первый представитель гомологического ряда алкенов - это этилен. Он является газом, малорастворимым в воде, но хорошо растворяющимся в органических растворителях, не имеющим цвета. Молекулярная масса - 28, этен немного легче воздуха, имеет едва уловимый сладковатый запах. Он легко вступает в реакции с галогенами, водородом и галогеноводородами. Физические свойства алкенов и парафинов тем не менее достаточно близки. Например, агрегатное состояние, способность метана и этилена к жесткому окислению и т. д. Как же можно различить алкены? Как выявить непредельный характер олефина? Для этого существуют качественные реакции, на которых мы и остановимся подробнее. Напомним, какую особенность в строении молекулы имеют алкены. Физические и химические свойства этих веществ определяются наличием в их составе двойной связи. Чтобы доказать ее присутствие, пропускают газообразный углеводород через фиолетовый раствор перманганата калия или бромную воду. Если они обесцветились, значит, соединение содержит в составе молекул пи-связи. Этилен вступает в реакцию окисления и обесцвечивает растворы KMnO 4 и Br 2 .

Механизм реакций присоединения

Разрыв двойной связи заканчивается присоединением к свободным валентностям карбона атомов других химических элементов. Например, при взаимодействии этилена с водородом, называемом гидрогенизацией, получается этан. Необходим катализатор, например порошковидный никель, палладий или платина. Реакция с HCl заканчивается образованием хлорэтана. Алкены, содержащие более двух атомов углерода в составе своих молекул, проходят реакцию присоединения галогеноводородов с учетом правила В. Марковникова.

Как гомологи этена взаимодействуют с галогеноводородами

Если перед нами стоит задание "Охарактеризуйте физические свойства алкенов и их получение", нам нужно рассмотреть правило В. Марковникова более подробно. Практическим путем установлено, что гомологи этилена реагируют с хлороводородом и другими соединениями по месту разрыва двойной связи, подчиняясь некоторой закономерности. Она заключается в том, что атом водорода присоединяется к наиболее гидрогенизированному углеродному атому, а ион хлора, брома или йода - к карбоновому атому, содержащему наименьшее количество атомов водорода. Эта особенность протекания реакций присоединения получила название правила В. Марковникова.

Гидратация и полимеризация

Продолжим далее рассматривать физические свойства и применение алкенов на примере первого представителя гомологического ряда - этена. Его реакция взаимодействия с водой используется в промышленности органического синтеза и имеет важное практическое значение. Впервые процесс был проведен еще в XIX веке А.М. Бутлеровым. Реакция требует выполнения ряда условий. Это, прежде всего, использование концентрированной серной кислоты или олеума в качестве катализатора и растворителя этена, давление порядка 10 атм и температура в пределах 70°. Процесс гидратации происходит в две фазы. Вначале по месту разрыва пи-связи к этену присоединяются молекулы сульфатной кислоты, при этом образуется этилсерная кислота. Затем полученное вещество реагирует с водой, получается этиловый спирт. Этанол - важный продукт, применяемый в пищевой промышленности для получения пластмасс, синтетических каучуков, лаков и других продуктов органической химии.

Полимеры на основе олефинов

Продолжая изучать вопрос применения веществ, относящихся к классу алкенов, изучим процесс их полимеризации, в котором могут участвовать соединения, содержащие непредельные химические связи в составе своих молекул. Известно несколько типов реакции полимеризации, по которым происходит образование высокомолекулярных продуктов - полимеров, например таких как полиэтилен, полипропилен, полистирол и т. д. Свободнорадикальный механизм приводит к получению полиэтилена высокого давления. Это одно из наиболее широко применяемых соединений в промышленности. Катионно-ионный тип обеспечивает получение полимера стереорегулярного строения, например полистирола. Он считается одним из наиболее безопасных и удобных в использовании полимеров. Изделия из полистирола устойчивы к агрессивным веществам: кислотам и щелочам, негорючие, легко окрашиваются. Еще один вид механизма полимеризации - димеризация, он приводит к получению изобутена, применяемого в качестве антидетонационной добавки к бензину.

Способы получения

Алкены, физические свойства которых мы изучаем, получают в лабораторных условиях и промышленности различными методами. В опытах в школьном курсе органической химии используют процесс дегидратации этилового спирта с помощью водоотнимающих средств, например таких, как пятиокись фосфора или сульфатная кислота. Реакция проводится при нагревании и является обратной процессу получения этанола. Еще один распространенный способ получения алкенов нашел свое применение в промышленности, а именно: нагревание галогенопроизводных предельных углеводородов, например хлорпропана с концентрированными спиртовыми растворами щелочей - гидроксида натрия или калия. В реакции происходит отщепление молекулы хлороводорода, по месту появления свободных валентностей атомов карбона образуется двойная связь. Конечным продуктом химического процесса будет олефин - пропен. Продолжая рассматривать физические свойства алкенов, остановимся на главном процессе получения олефинов - пиролизе.

Промышленное производство непредельных углеводородов ряда этилена

Дешевое сырье - газы, образующиеся в процессе крекинга нефти, служат источником получения олефинов в химической промышленности. Для этого применяют технологическую схему пиролиза - расщепление газовой смеси, идущее с разрывом углеродных связей и образованием этилена, пропена и других алкенов. Пиролиз проводят в специальных печах, состоящих из отдельных пирозмеевиков. В них создается температура порядка 750-1150°C и присутствует водяной пар в качестве разбавителя. Реакции происходят по цепному механизму, идущему с образованием промежуточных радикалов. Конечный продукт - это этилен или пропен, их получают в больших объемах.

Мы подробно изучили физические свойства, а также применение и способы получения алкенов.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г