Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Закон кулона в диэлектрической среде. Купить диплом о высшем образовании недорого

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними

Иначе: Два точечных заряда в вакууме действуют друг на друга с силами, которые пропорциональны произведению модулей этих зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды. Эти силы называются электростатическими (кулоновскими).

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности. Таким образом, закон указывает, что одноимённые заряды отталкиваются (а разноимённые — притягиваются).

Коэффициент k

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10-7 Гн/м = 8,9875517873681764·109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

где ≈ 8,854187817·10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется относительная диэлектрическая проницаемость среды ε.

Закон Кулона в квантовой механике

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

j}\frac{e^2}{r_{ij}}" src="http://upload.wikimedia.org/math/d/0/8/d081b99fac096b0e0c5b4290a9573794.png">.

Здесь m — масса электрона, е — его заряд, — абсолютная величина радиус-вектора j -го электрона, . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем N электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно.

Закон Кулона с точки зрения квантовой электродинамики

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона.

История

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил, что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщениео том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества» отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «электрическое притяжение следует точно такому же закону, как и тяготение, то есть квадрату расстояния» . Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785).

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона, принцип суперпозиции и уравнения Максвелла

Закон Кулона и принцип суперпозиции для электрических полей полностью равносильны уравнениям Максвелла для электростатики и . То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики и, наоборот, уравнения Максвелла для электростатики выполняются тогда и только тогда, когда выполняются закон Кулона и принцип суперпозиции для электрических полей.

Cтепень точности закона Кулона

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника.

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9.

Коэффициент в законе Кулона остается постоянным с точностью до 15·10−6.

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона, ≈3.86·10−13 м, где — масса электрона, — постоянная Планка, — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона. Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка принимает вид:

где — комптоновская длина волны электрона, — постоянная тонкой структуры и . На расстояниях порядка ~ 10−18 м, где — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка ~1018 В/м или ~109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально.

Закон Кулона и поляризация вакуума

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния . Эффективный потенциал, создаваемый электроном с электрическим зарядом , можно описать зависимостью вида . Эффективный заряд зависит от расстояния по логарифмическому закону:

— т. н. постоянная тонкой структуры ≈7.3·10−3;

— т. н. классический радиус электрона ≈2.8·10−13 см.

Эффект Юлинга

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 мггц.

Закон Кулона и сверхтяжелые ядра

В сильном электромагнитном поле вблизи сверхтяжелых ядер с зарядом 170" src="http://upload.wikimedia.org/math/0/d/7/0d7b5476a5437d2a99326cf04b131458.png"> осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона.

Значение закона Кулона в истории науки

Закон Кулона является первым открытым количественным и сформулированным на математическом языке законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме.

На данном уроке, тема которого: «Закон Кулона», мы поговорим о самом законе Кулона, о том, что такое точечные заряды, а для закрепления материала решим несколько задач на данную тему.

Тема урока: «Закон Кулона». Закон Кулона количественно описывает взаимодействие точечных неподвижных зарядов - то есть зарядов, которые находятся в статичном положении друг относительно друга. Такое взаимодействие называется электростатическим или электрическим и является частью электромагнитного взаимодействия.

Электромагнитное взаимодействие

Конечно, если заряды находятся в движении - они тоже взаимодействуют. Такое взаимодействие называется магнитным и описывается в разделе физики, который носит название «Магнетизм».

Стоит понимать, что «электростатика» и «магнетизм» - это физические модели, и вместе они описывают взаимодействие как подвижных, так и неподвижных друг относительно друга зарядов. И всё вместе это называется электромагнитным взаимодействием.

Электромагнитное взаимодействие - это одно из четырех фундаментальных взаимодействий, существующих в природе.

Электрический заряд

Что же такое электрический заряд? Определения в учебниках и Интернете говорят нам, что заряд - это скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел. То есть электромагнитное взаимодействие - это взаимодействие зарядов, а заряд - это величина, характеризующая электромагнитное взаимодействие. Звучит запутанно - два понятия определяются друг через друга. Разберемся!

Существование электромагнитного взаимодействия - это природный факт, что-то вроде аксиомы в математике. Люди его заметили и научились описывать. Для этого они ввели удобные величины, которые это явление характеризуют (в том числе электрический заряд) и построили математические модели (формулы, законы и т. д.), которые это взаимодействие описывают.

Закон Кулона

Выглядит закон Кулона следующим образом:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Коэффициент k в законе Кулона численно равен:

Аналогия с гравитационным взаимодействием

Закон всемирного тяготения гласит: все тела, обладающие массой, притягиваются друг к другу. Такое взаимодействие называется гравитационным. Например, сила тяжести, с которой мы притягиваемся к Земле, - это частный случай именно гравитационного взаимодействия. Ведь и мы, и Земля обладаем массой. Сила гравитационного взаимодействия прямо пропорциональна произведению масс взаимодействующих тел и обратно пропорциональна квадрату расстояния между ними.

Коэффициент γ называется гравитационной постоянной.

Численно он равен: .

Как видите, вид выражений, количественно описывающих гравитационное и электростатическое взаимодействия, очень похож.

В числителях обоих выражений - произведение единиц, характеризующих данный тип взаимодействия. Для гравитационного - это массы, для электромагнитного - заряды. В знаменателях обоих выражений - квадрат расстояния между объектами взаимодействия.

Обратная зависимость от квадрата расстояния часто встречается во многих физических законах. Это позволяет говорить об общей закономерности, связывающей величину эффекта с квадратом расстояния между объектами взаимодействия.

Эта пропорциональность справедлива для гравитационного, электрического, магнитного взаимодействий, силы звука, света, радиации и т. д.

Объясняется это тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату радиуса (см. рис. 1).

Рис. 1. Увеличение площади поверхности сфер

Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

Физически это означает, что сила взаимодействия двух точечных неподвижных зарядов в 1 Кл, находящихся на расстоянии 1 м друг от друга в вакууме, будет равна 9·10 9 Н (см. рис. 2).

Рис. 2. Сила взаимодействия двух точечных зарядов в 1 Кл

Казалось бы, эта сила огромна. Но стоит понимать, что ее порядок связан с еще одной характеристикой - величиной заряда 1 Кл. На практике заряженные тела, с которыми мы взаимодействуем в повседневной жизни, имеют заряд порядка микро- или даже нанокулонов.

Коэффициент и электрическая постоянная

Иногда вместо коэффициента используется другая постоянная, характеризующая электростатическое взаимодействие, которая так и называется - «электрическая постоянная». Обозначается она . С коэффициентом она связана следующим образом:

Выполнив несложные математические преобразования можно ее выразить и вычислить:

Обе константы, конечно, присутствуют в таблицах задачников. Закон Кулона тогда примет такой вид:

Обратим внимание на несколько тонких моментов.

Важно понимать, что речь идет именно о взаимодействии. То есть если мы возьмем два заряда, то каждый из них будет действовать на другой с силой, по модулю равной. Эти силы будут направлены в противоположные стороны вдоль прямой, соединяющей точечные заряды.

Заряды будут отталкиваться, если они имеют один знак (оба положительные или оба отрицательные (см. рис. 3)), и притягиваться, если имеют разные знаки (один отрицательный, другой положительный (см. рис. 4)).

Рис. 3. Взаимодействие одноименных зарядов

Рис. 4. Взаимодействие разноименных зарядов

Точечный заряд

В формулировке закона Кулона присутствует термин «точечный заряд». Что это означает? Вспомним механику. Исследуя, например, движение поезда между городами, мы пренебрегали его размерами. Ведь размеры поезда в сотни или тысячи раз меньше расстояния между городами (см. рис. 5). В такой задаче мы считали поезд «материальной точкой» - телом, размерами которого в рамках решения некоторой задачи мы можем пренебречь.

Рис. 5. Размерами поезда в данном случае пренебрегаем

Так вот, точечные заряды - это материальные точки, обладающие зарядом. На практике, используя закон Кулона, мы пренебрегаем размерами заряженных тел в сравнении с расстояниями между ними. Если же размеры заряженных тел сопоставимы с расстоянием между ними, то из-за перераспределения заряда внутри тел электростатическое взаимодействие будет носить более сложный характер.

В вершинах правильного шестиугольника со стороной помещены друг за другом заряды . Найдите силу, действующую на заряд , расположенный в центре шестиугольника (см. рис. 6).

Рис. 6. Рисунок к условию задачи 1

Порассуждаем: заряд, находящийся в центре шестиугольника, будет взаимодействовать с каждым из зарядов, находящихся в вершинах шестиугольника. В зависимости от знаков это будет сила притяжения или сила отталкивания. С зарядами 1, 2 и 3, которые являются положительными, заряд, находящийся в центре, будет испытывать электростатическое отталкивание (см. рис. 7).

Рис. 7. Электростатическое отталкивание

А с зарядами 4, 5 и 6 (отрицательными) заряд в центре будет иметь электростатическое притяжение (см. рис. 8).

Рис. 8. Электростатическое притяжение

Суммарная сила, действующая на заряд, находящийся в центре шестиугольника, будет равнодействующей сил ,,,, и, модуль каждой из которых можно найти с помощью закона Кулона. Приступим к решению задачи.

Решение

Силы взаимодействия заряда, который находится в центре, с каждым из зарядов в вершинах зависит от модулей самих зарядов и расстояния между ними. Расстояние от вершин к центру правильного шестиугольника одинаковое, модули у взаимодействующих зарядов в нашем случае тоже равны (см. рис. 9).

Рис. 9. Расстояния от вершин до центра в правильном шестиугольнике равны

А значит, все силы взаимодействия заряда в центре шестиугольника с зарядами в вершинах будут равны по модулю. Воспользовавшись законом Кулона, мы можем найти этот модуль:

Расстояние от центра до вершины в правильном шестиугольнике равно длине стороны правильного шестиугольника, которая нам известна из условия, поэтому:

Теперь нам необходимо найти векторную сумму - для этого выберем систему координат: ось вдоль силы , а ось перпендикулярно (см. рис. 10).

Рис. 10. Выбор осей

Найдем суммарные проекции на оси - модуль каждой из них обозначим просто .

Так как силы и сонаправлены с осью , а находятся под углом к оси (см. рис. 11).

Проделаем такие же действия для оси :

Знак «-» - потому что силы и направлены в противоположную сторону оси . То есть проекция суммарной силы на ось , которую мы выбрали, будет равна 0. Получается, что суммарная сила будет действовать только вдоль оси , остается подставить сюда только выражения для модуля сил взаимодействия и и получить ответ. Суммарная сила будет равна:

Задача решена.

Еще один тонкий момент заключается вот в чем: в законе Кулона сказано, что заряды находятся в вакууме (см. рис. 12).

Рис. 12. Взаимодействие зарядов в вакууме

Это действительно важное замечание. Потому что в среде, отличной от вакуума, сила электростатического взаимодействия будет ослабляться (см. рис. 13).

Рис. 13. Взаимодействие зарядов в среде, отличной от вакуума

Чтобы учесть этот фактор, в модель электростатики была введена специальная величина, которая позволяет сделать «поправку на среду». Называется она диэлектрической проницаемостью среды. Обозначается, как и электрическая постоянная, греческой буквой «эпсилон», но уже без индекса.

Физический смысл этой величины заключается в следующем.

Сила электростатического взаимодействия двух точечных неподвижных зарядов в среде, отличной от вакуума, будет в ε раз меньше, чем сила взаимодействия таких же зарядов на таком же расстоянии в вакууме.

Таким образом, в среде, отличной от вакуума, сила электростатического взаимодействия двух точечных неподвижных зарядов будет равна:

Значения диэлектрической проницаемости различных веществ давно найдены и собраны в специальных таблицах (см. рис. 14).

Рис. 14. Диэлектрическая проницаемость некоторых веществ

Мы можем свободно использовать табличные значения диэлектрической проницаемости необходимых нам веществ при решении задач.

Важно понимать, что при решении задач сила электростатического взаимодействия рассматривается и описывается в уравнениях динамики как обычная сила. Решим задачу.

Два одинаковых заряженных шарика подвешены в среде с диэлектрической проницаемостью на нитях одинаковой длины , закрепленных в одной точке. Определите модуль заряда шариков, если нити находятся под прямым углом друг к другу (см. рис. 15). Размеры шариков пренебрежимо малы по сравнению с расстоянием между ними. Массы шариков равны .


Рис. 15. Рисунок к условию задачи 2

Порассуждаем: на каждый из шариков будут действовать три силы - сила тяжести ; сила электростатического взаимодействия и сила натяжения нити (см. рис. 16).

Рис. 16. Силы, действующие на шарики

По условию шарики одинаковые, то есть их заряды равны как по модулю, так и по знаку, а значит, сила электростатического взаимодействия в данном случае будет силой отталкивания (на рис. 16 силы электростатического взаимодействия направлены в разные стороны). Так как система находится в равновесии, будем использовать первый закон Ньютона:

Так как в условии сказано, что шарики подвешены в среде с диэлектрической проницаемостью , а размеры шариков пренебрежимо малы по сравнению с расстоянием между ними, то в соответствии с законом Кулона сила, с которой будут отталкиваться шарики, будет равна:

Решение

Распишем первый закон Ньютона в проекциях на оси координат. Ось направим горизонтально, а ось вертикально (см. рис. 17).

Понятие электричества. Электризация. Проводники, полупроводники и диэлектрики. Элементарный заряд и его свойства. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Электрическое поле как проявления взаимодействия. Электрическое поле элементарного диполя.

Термин электричество происходит от греческого слова электрон (янтарь).

Электризацией называют процесс сообщения телу электрического

заряда. Этот термин ввел в 16 веке английский ученый и врач Джилберт.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД – ЭТО ФИЗИЧЕСКАЯ СКАЛЯРНАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ СВОЙСТВА ТЕЛ ИЛИ ЧАСТИЦ ВСТУПАТЬ И ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ, И ОПРЕДЕЛЯЮЩАЯ СИЛУ И ЭНЕРГИЮ ЭТИХ ВЗВИМОДЕЙСТВИЙ.

Свойства электрических зарядов:

1.В природе существуют два типа электрических зарядов. Положительные (возникают на стекле потертом о кожу) и отрицательные(возникают на эбоните потертом о мех).

2. Одноименные заряды отталкиваются, разноименные притягиваются.

3. Электрический заряд НЕ СУЩЕСТВУЕТ БЕЗ ЧАСТИЦ НОСИТЕЛЕЙ ЗАРЯДА (электрон, протон, позитрон и др.).Например с электрона и др. элементарных заряженных частиц нельзя снять э/заряд.

4.Электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е = 1,6 10 -19 Кл). Электрон (т е = 9,11 10 -31 кг) и протон (т р = 1,67 10 -27 кг ) являются соответственно носителями элементарных отрицательного и положительного зарядов.(Известны частицы с дробным электрическим зарядом: – 1/3 е и 2/3 е – это кварки и антикварки , но в свободном состоянии они не обнаружены).

5. Электрический заряд - величина релятивистски инвариантная , т.е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

6. Из обобщения опытных данных установлен фундаментальный закон природы - закон сохранения заряда: алгебраическая сум-

ма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Закон экспериментально подтвержден в 1843 г. английским физиком

М. Фарадеем ( 1791- 1867) и др., подтвержден рождением и аннигиляцией частиц и античастиц.

Единица электрического заряда (производная единица, так как определяется через единицу силы тока) - кулон (Кл): 1 Кл - электрический заряд,

проходящий через поперечное сечение проводника при силе тока 1 А за время 1с.

Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Электризация тел может осуществляться различными способами: соприкосновением (трением), электростатической индукцией

и др. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) - избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.

Электризация тел возможна потому, что тела состоят из заряженных частиц. В процессе электризации тел могут перемещаться, находящиеся в свободном состоянии, электроны и ионы. Протоны остаются в ядрах.

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники .

Проводники - тела, в которых электрический заряд может перемешаться по всему его объему. Проводники делятся на две группы:

1) проводники первого рода (металлы) - перенос в

них зарядов (свободных электронов) не сопровождается химическими

превращениями;

2) проводники второго рода (например, расплавленные соли, ра-

створы кислот) - перенос в них зарядов (положительных и отрицательных

ионов) ведет к химическим изменениям.

Диэлектрики (например, стекло, пластмассы) - тела, в которых практически отсутствуют свободные заряды.

Полупроводники (например, германий, кремний) занимают

промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обусловливает огромные качественные различия в их поведении и поэтому оправдывает деление тел на проводники, диэлектрики и полупроводники.

ЭЛЕКТРОСТАТИКА - наука о неподвижных зарядах

Закон Кулона.

Закон взаимодействия неподвижных точечных электрических зарядов

Экспериментально установлен в 1785 г. Ш. Кулоном с помощью крутильных весов.

подобных тем, которые использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет).

Точечным зарядом, называется заряженное тело или частица, размерами которых можно пренебречь, по сравнению с расстоянием до них.

Закон Кулона: сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам q 1 и q 2 , и обратно пропорциональна квадрату расстояния r между ними :


k - коэффициент пропорциональности, зависящий от выбора системы

В СИ

Величина ε 0 называется электрической постоянной; она относится к

числу фундаментальных физических постоянных и равна:

ε 0 = 8,85 ∙10 -12 Кл 2 /Н∙м 2

векторной форме закон Кулона в вакууме имеет вид:

где - радиус вектор, соединяющий второй заряд с первым, F 12 – сила, действующая со стороны второго заряда на первый.

Точность выполнения закона Кулона на больших расстояниях, вплоть до

10 7 м, установлена при исследовании магнитного поля с помощью спутников

в околоземном пространстве. Точность же его выполнения на малых расстояниях, вплоть до 10 -17 м, проверена экспериментами по взаимодействию элементарных частиц.

Закон Кулона в среде

Во всех средах сила кулоновского взаимодействия меньше по сравнению с силой взаимодействием в вакууме или воздухе. Физическая величина, показывающая во сколько раз сила электростатического взаимодействия в вакууме больше, чем в данной среде, называется диэлектрической проницаемостью среды и обозначается буквой ε.

ε = F в вакууме / F в среде

Закон кулона в общем виде в СИ:

Свойства Кулоновских сил.

1.Кулоновские силы - это силы центрального типа, т.к. направлены вдоль прямой, соединяющей заряды

Кулоновская сила является силой притяжения, если знаки зарядов разные и силой отталкивания, если знаки зарядов одинаковые

3. Длякулоновских сил справедлив 3 закон Ньютона

4.Кулоновские силы подчиняются принципу независимости или суперпозиции, т.к. сила взаимодействия между двумя точечными зарядами не изменятся при появлении вблизи других зарядов. Результирующая сила электростатического взаимодействия, действующая на данный заряд, равна векторной сумме сил взаимодействия данного заряда с каждым зарядом системы отдельно.

F= F 12 +F 13 +F 14 + ∙∙∙ +F 1 N

Взаимодействия между зарядами осуществляются посредством электрического поля. Электрическое поле – это особая форма существования материи, посредством которой осуществляется взаимодействие электрических зарядов. Электрическое поле проявляет себя тем, что на любой другой заряд внесенный в это поле оно действует с силой. Электростатическое поле создается неподвижными электрическими зарядами и распространяется в пространстве с конечной скоростью с.

Силовая характеристика электрического поля называется напряженностью.

Напряженностью электрического в некоторой точке называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку, к модулю этого заряда.

Напряженность поля точечного заряда q:


Принцип суперпозиции: напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в этой точке каждым зарядом в отдельности (в отсутствие других зарядов).

§ 2. Взаимодействие зарядов. Закон Кулона

Электрические заряды взаимодействуют между собой, т. е. одноименные заряды взаимно отталкиваются, а разноименные притягиваются. Силы взаимодействия электрических зарядов определяются законом Кулона и направлены по прямой линии, соединяющей точки, в которых сосредоточены заряды.
Согласно закону Кулона, сила взаимодействия двух точечных электрических зарядов прямо пропорциональна произведению количеств электричества в этих зарядах, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся заряды:

где F - сила взаимодействия зарядов, н (ньютон);
Один ньютон содержит ≈ 102 г силы.
q 1 , q 2 - количество электричества каждого заряда, к (кулон);
Один кулон содержит 6,3 · 10 18 зарядов электрона.
r - расстояние между зарядами, м ;
ε а - абсолютная диэлектрическая проницаемость среды (материала); эта величина характеризует электрические свойства той среды, в которой находятся взаимодействующие заряды. В Международной системе единиц (СИ) ε а измеряется в (ф/м ). Абсолютная диэлектрическая проницаемость среды

где ε 0 - электрическая постоянная, равная абсолютной диэлектрической проницаемости вакуума (пустоты). Она равна 8,86 · 10 -12 ф/м .
Величина ε, показывающая, во сколько раз в данной среде электрические заряды взаимодействуют между собой слабее, чем в вакууме (табл. 1), называется диэлектрической проницаемостью . Величина ε есть отношение абсолютной диэлектрической проницаемости данного материала к диэлектрической проницаемости вакуума:

Для вакуума ε = 1. Диэлектрическая проницаемость воздуха практически близка к единице.

Таблица 1

Диэлектрическая проницаемость некоторых материалов

На основании закона Кулона можно сделать вывод, что большие электрические заряды взаимодействуют сильнее, чем малые. С увеличением расстояния между зарядами сила их взаимодействия значительно слабее. Так, с увеличением расстояния между зарядами в 6 раз уменьшается сила их взаимодействия в 36 раз. При сокращении расстояния между зарядами в 9 раз увеличивается сила их взаимодействия в 81 раз. Взаимодействие зарядов также зависит от материала, находящегося между зарядами.
Пример. Между электрическими зарядами Q 1 = 2 · 10 -6 к и Q 2 = 4,43 · 10 -6 к , расположенными на расстоянии 0,5 м , помещена слюда (ε = 6). Вычислить силу взаимодействия указанных зарядов.
Решение . Подставляя в формулу значения известных величин, получим:

Если в вакууме электрические заряды взаимодействуют с силой F в, то, поместив между этими зарядами, например, фарфор, их взаимодействие можно ослабить в 6,5 раз, т. е. в ε раз. Это значит, что сила взаимодействия между зарядами может быть определена как отношение

Два точечных заряда действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов (без учета знака зарядов)


В различных средах, например в воздухе и в воде, два точечных заряда взаимодействуют с разной силой. Относительная диэлектрическая проницаемость среды характеризуют это различие. Это известная табличная величина . Для воздуха .

Постоянная k определяется как

Направление силы Кулона


Согласно третьему закону Ньютона , силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения . Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.