Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Требования к автоматизации производственных процессов. Вопросы к экзамену по. Объекты автоматизации процессов производства и их параметры

Этапы и средства автоматизации производства

Предшественником автоматизации явилась комплексная механизация производства, в процессе которой физические функции человека в производственном процессе выполнялись с помощью механизмов с ручным управлением. Труд человека при этом облегчался физически, и его основной деятельностью становилось управление механизмами. Механизация направлена на облегчение условий человеческого труда и повышение его производительности.

По мере развития механизации возникает задача полной или частичной автоматизации управления механизмами. В результате решения этой задачи создаются технологические автоматы, способные в большей или меньшей степени выполнять производственные функции без участия человека. Возникновение и распространение технологических автоматов положило начало автоматизации производства.

В развитии автоматизации можно выделить ряд последовательных этапов, каждый из которых характеризуется появлением новых средств автоматизации и расширением состава объектов автоматизации производства. Укрупненно, применительно к промышленному производству, можно выделить следующие основные этапы автоматизации.

1. Автоматизация массового производства. При массовом производстве промышленной продукции задача повышения производительности труда стоит особенно остро. Здесь возможны значительные затраты на средства автоматизации, поскольку будучи отнесенными к единице продукции (при большом числе единиц продукции), они приводят к приемлемому росту ее цены.

В результате становится целесообразным создание и использование в производстве специализированных и специальных технологических автоматов. Каждый такой автомат рассчитан на единственную технологическую операцию или ограниченный набор технологических операций при производстве определенного изделия. Задача перестройки автомата на выпуск других изделий либо ставится в ограниченном объеме, либо не ставится вовсе.

Основной целью автоматизации является получение максимальной производительности. Технологический процесс изготовления изделия разбивается на простые операции малой длительности, которые можно выполнять параллельно на разных технологических автоматах.

Из технологических автоматов создаются поточные линии в соответствии с последовательностью технологических операций процесса изготовления изделия. Дальнейшее повышение уровня автоматизации достигается путем автоматизации межоперационного транспорта и промежуточного складирования (межоперационные накопители полуфабрикатов). Результатом такой комплексной автоматизации технологического процесса является создание автоматических линий.

Автоматическая линия реализует в автоматическом режиме технологический процесс изготовления определенного изделия. Автоматическая линия для достижения наивысшей производительности строится из специального и специализированного оборудования. Создание и внедрение автоматической линии требует больших временных и материальных затрат, следовательно, такие линии экономически эффективны только при массовом производстве изделий, когда одно и то же изделие в неизменном виде выпускается непрерывно в больших количествах в течение рядя лет. Автоматические линии имеют ограниченные возможности для переналадки на изготовление иной продукции или такие возможности вообще не предусматриваются.

Поскольку использование автоматических линий и цикловых технологических автоматов ограничено массовым и крупносерийным производством, то соответственно ограничены объемы автоматизированного производства на их основе. По разным оценкам объем массового и крупносерийного производства составляет от 15 до 20 % общего объема производства и эта доля имеет тенденцию к сокращению. Следовательно, уровень автоматизации производства с помощью автоматических линий и цикловых автоматов может составить не более 15–20 %. Реально этот уровень еще меньше.

Цикловые технологические автоматы и автоматические линии относятся к средствам "жесткой" автоматизации. С их помощью можно достичь весьма высокой производительности труда, однако область использования таких средств ограничена, и только на их основе полная автоматизация производства невозможна.

2. Автоматизация основных операций обработки многономенклатурного производства. Многономенклатурное производство предполагает изготовление разнообразных изделий партиями ограниченного объема в ограниченные сроки. Номенклатура изделий и объемы партий могут колебаться в широких пределах: от единичных изделий до партий среднесерийного производства.

При многономенклатурном производстве технологическое оборудование должно быть в значительной степени универсальным и обеспечивать переналадку и перестройку на изготовление разнообразных изделий (в пределах технологических возможностей оборудования). В случае автоматизированного производства такая переналадка и перестройка должны осуществляться в автоматизированном режиме с минимальным объемом ручных операций или с полным их исключением.

Выполнение перечисленных условий определяет "гибкую" автоматизацию. Основным принципом гибкой автоматизации является принцип программного управления технологическим оборудованием. Рабочий цикл технологического автомата при этом задается управляющей программой, содержащей кодированное описание последовательности элементов цикла с использованием определенной символики. Управляющая программа разрабатывается обособленно от управляемого оборудования и оформляется на некотором машинном носителе, что позволяет считывать ее автоматическому устройству управления технологического автомата.

Впервые этот принцип (который возник и усовершенствовался при управлении ЭВМ) был реализован для автоматизации металлорежущих станков. Появились и начали широко распространяться станки с числовым программным управлением (ЧПУ). Первые модели станков с ЧПУ из-за недостаточного совершенства требовали при изменении рабочего цикла не только замены управляющей программы, но и некоторых ручных операций для переналадки. Такие станки оказывались эффективными при обработке партий однотипных деталей объемом не менее 50–100 шт. По мере совершенствования принципов ЧПУ и технических решений этот предел постоянно снижался, и в настоящее время станки с ЧПУ эффективны даже в индивидуальном производстве.

Вначале были созданы станки с ЧПУ для определенных видов механической обработки. В последующем получили распространение многооперационные станки с ЧПУ с автоматической сменой обрабатывающего инструмента (обрабатывающие центры).



Станки с ЧПУ позволяют автоматизировать процесс обработки деталей и обладают гибкостью, поскольку способны перестраиваться на обработку деталей иной формы путем замены управляющей программы. Это обстоятельство позволяет, например, автоматизировать процесс переналадки станка и, следовательно, повышает уровень автоматизации производства.

Принцип ЧПУ, ввиду эффективности, получил распространение и для другого технологического оборудования, что позволило обеспечить гибкую автоматизацию разнообразных технологических операций. Оборудование с ЧПУ в первую очередь получило распространение в машиностроении, приборостроении и металлообработке. Однако его использование не ограничено перечисленными отраслями.

Основным недостатком оборудования с ЧПУ является отсутствие автоматизации вспомогательных операций и необходимость в ручном обслуживании оборудования. Названное обстоятельство приводит к снижению коэффициента использования оборудования до уровня 40–60 %.

3. Промышленная робототехника. Автоматизация основных операций технологических процессов привела к росту противоречия между уровнем их автоматизации и уровнем автоматизации вспомогательных операций (в первую очередь операций загрузки-разгрузки автоматизированного оборудования). В качестве средства устранения этого противоречия была предложена концепция программно-управляемого перестраиваемого автомата для выполнения вспомогательных операций по обслуживанию автоматизированного оборудования.

Такие автоматы появились в шестидесятых годах прошлого столетия и получили название промышленных роботов (ПР). Первые разработки промышленных роботов были ориентированы на замену человека при выполнении операций загрузки заготовок в технологические автоматы и разгрузки обработанных изделий. На базе технологического автомата и обслуживающего его робота создаются роботизированные технологические комплексы (РТК), представляющие собой комплексно автоматизированные технологические ячейки.

С помощью РТК появляется возможность комплексной автоматизации отдельных технологических операций или ограниченного набора технологических операций в многономенклатурном производстве. Первые РТК с использованием простых ПР с цикловым управлением были эффективны в среднесерийном производстве. По мере совершенствования ПР (роботы с ЧПУ, адаптивные роботы, интеллектуальные роботы), повышается их гибкость и возможность эффективного применения в мелкосерийном и индивидуальном производстве.

Промышленные роботы постоянно совершенствуются. В процессе совершенствования улучшаются технические характеристики роботов, расширяются их функциональные возможности, расширяется сфера применения. В настоящее время основная масса выпускаемых ПР ориентирована на выполнение технологических операций: сварка, окраска, сборка и некоторые другие основные технологические операции. Наряду с такими роботами продолжают использоваться загрузочно-разгрузочные роботы, появились транспортные роботы и др.

4. Автоматизация управления. Управление в любом производстве требует решения большого объема задач по сбору и обработке информации, принятию решений и контролю их исполнения. Для решения задач управления привлекаются значительные людские ресурсы. Качество решения управленческих задач в существенной мере определяет результат производства.

Возможность автоматизации управления появилась с развитием и широким распространением ЭВМ, когда ЭВМ стали доступны для использования отдельными предприятиями. Появилась возможность автоматизации (с помощью ЭВМ и соответствующего программного обеспечения) процессов сбора и обработки информации, необходимой для принятия управленческих решений и контроля хода производства. С использованием ЭВМ стали решаться задачи планирования производства, задачи материального обеспечения, задачи учета труда и заработной платы, а также ряд других задач управления производством.

Решение таких задач не было жестко привязано во времени к производственным процессам и могло осуществляться в "машинном" времени ЭВМ, т.е. в течение такого временного периода, который требуется для выполнения соответствующей программы ЭВМ. Характерным для этого этапа автоматизации явилось создание на производстве централизованных вычислительных центров для решения задач управления. Связь между ЭВМ и производством, в основном, осуществлялась с использованием оперативного персонала.

Подобные централизованные системы получили название автоматизированных систем управления производством (АСУП). АСУП обеспечивает решение задач организационного и диспетчерского управления производством. Основной эффект от внедрения АСУП заключается в сокращении времени, необходимого для принятия управленческих решений, повышении оперативности управления и его качества, а также в сокращении управленческого персонала, занятого рутинной обработкой информации.

Значительный объем управления в производстве приходится на задачи оперативно-технического управления производственным оборудованием и технологическими процессами. Для автоматизации решения этих задач необходимо обеспечить непосредственную связь между управляющей ЭВМ и объектами управления. Кроме того, задачи оперативно-технического управления должны решаться в реальном времени управляемого процесса.

Поэтому наряду с АСУП появились системы автоматизированного управления технологическими процессами (АСУ ТП), которые обеспечивают в автоматизированном режиме решение задач оперативно-технического, диспетчерского и организационного управления отдельными технологическими процессами производства. Интеграция АСУ ТП с автоматизированным технологическим комплексом обеспечивает реализацию концепции безлюдной технологии в производстве.

5. Автоматизация инженерного труда. Производство требует затрат высококвалифицированного труда специалистов – инженеров. Инженеры разрабатывают новую продукцию, проводят научные исследования и испытания, разрабатывают новые технологические процессы и модернизируют старые. Без инженерного труда невозможен прогресс производства. Затраты на оплату инженерного труда в производственных расходах составляют значительную долю (по стандартам промышленно развитых стран).

Стремление повысить эффективность инженерного труда, сократить материальные и временные затраты на проектирование новой или модернизированной продукции, на проведение исследований, на подготовку производства привело к появлению соответствующих автоматизированных систем. Основой таких систем явилось использование ЭВМ, поскольку инженерный труд – интеллектуальный труд. Типичные инженерные задачи являются эвристическими задачами, опирающимися на значительный объем рутинных работ.

Рутинные работы (получение справочной информации, оформление результатов, оформление чертежей и текстовых документов и др.) в большинстве случаев поддаются алгоритмизации (описанию в виде детерминированной последовательности простых операций) и, следовательно, их можно автоматизировать, используя ЭВМ. В принципе, автоматизировать можно любые процессы, поддающиеся алгоритмизации.

Средством автоматизации инженерного труда являются програм-мно-технические комплексы на базе ЭВМ: системы автоматизации проектирования (САПР), автоматизированные системы научных исследований (АСНИ), автоматизированные системы технологической подготовки производства (АСТПП). Первые две системы используются конструкторами и исследователями для разработки новой или модернизации существующей продукции. Результатом их работы являются технические и рабочие проекты новой продукции.

Для реализации этих проектов необходимо выполнить подготовку производства спроектированной продукции. Эта задача возлагается на специалистов-технологов, осуществляющих проектирование новых технологических процессов или модернизацию существующих. Для автоматизации труда технологов (тех работ, которые поддаются алгоритмизации) предназначены АСТПП. Использование АСТПП позволяет повысить эффективность подготовки производства, сократить материальные и временные затраты на этот процесс, повысить качество результатов и сократить затраты человеческого труда.

6. Интеграция автоматизированных производственных систем в единое гибкое автоматизированное производство (ГАП). Интеграция заключается в совместном использовании и взаимодействии перечисленных выше систем автоматизации для достижения конечной цели производства. При этом системы автоматизации интеллектуальных функций человека (проектирование, управление, исследования, разработка технологий) используют общие базы данных, что обеспечивает прямой обмен информацией между ними.

В ГАП основным принципом управления оборудованием и процессами является программное управление от ЭВМ, что обеспечивает перестройку производства на выпуск новой или модернизированной продукции программным путем (заменой управляющих программ) в автоматизированном режиме. В результате производство приобретает свойство гибкости и реализует концепцию гибкой технологии. Комплексная автоматизация человеческого труда позволяет сократить долю человеческого труда в ГАП в 20 раз по сравнению с традиционным производством. Такое производство реализует концепцию безлюдной технологии.

В условиях ГАП автоматизированы как физические, так и интеллектуальные функции человека. Для автоматизации интеллектуальных функций основным средством являются ЭВМ. Поэтому ГАП часто называют интегрированным и компьютеризированным производством.

1. Особенности проектирования технологических процессов в условиях автоматизированного производства

Основой автоматизации производства являются технологические процессы (ТП), которые должны обеспечивать высокую производительность, надежность, качество и эффективность изготовления изделий.

Характерной особенностью ТП обработки и сборки является строгая ориентация деталей и инструмента относительно друг друга в рабочем процессе (первый класс процессов). Термообработка, сушка, окраска и прочее в отличие от обработки и сборки не требуют строгой ориентации детали (второй класс процессов).

ТП классифицируют по непрерывности на дискретные и непрерывные.

Разработка ТП АП по сравнению с технологией неавтоматизированного производства имеет свою специфику:

1.Автоматизированные ТП включают не только разнородные операции механической обработки резанием, но и обработку давлением, термообработку, сборку, контроль, упаковку, а также транспортно-складские и другие операции.

2.Требования к гибкости и автоматизации производственных процессов диктуют необходимость комплексной и детальной проработки технологии, тщательного анализа объектов производства, проработки маршрутной и операционной технологии, обеспечения надежности и гибкости процесса изготовления изделий с заданным качеством.

3.При широкой номенклатуре изделий технологические решения многовариантны.

4.Возрастает степень интеграции работ, выполняемых различными технологическими подразделениями.

Основные принципы построения технологии механообработки в АПС

1.Принцип завершенности . Следует стремиться к выполнению всех операций в пределах одной АПС без промежуточной передачи полуфабрикатов в другие подразделения или вспомогательные отделения.

2.Принцип малооперационной технологии. Формирование ТП с максимально возможным укрупнением операций, с минимальным числом операций и установок в операциях.

3.Принцип «малолюдной» технологии. Обеспечение автоматической работы АПС в пределах всего производственного цикла.

4.Принцип «безотладочной» технологии . Разработка ТП, не требующих отладки на рабочих позициях.

5.Принцип активно-управляемой технологии. Организация управления ТП и коррекция проектных решений на основе рабочей информации о ходе ТП. Корректироваться могут как технологические параметры, формируемые на этапе управления, так и исходные параметры технологической подготовки производства (ТПП).

6.Принцип оптимальности . Принятие решения на каждом этапе ТПП и управления ТП на основе единого критерия оптимальности.

Помимо рассмотренных для технологии АПС характерны и др. принципы: компьютерной технологии, информационной обеспеченности, интеграции, безбумажной документации, групповой технологии.

2. Типовые и групповые ТП

Типизация технологических процессов для сходных по конфигурации и технологическим особенностям групп деталей предусматривает их изготовление по одинаковым ТП, основанным на применении наиболее совершенных методов обработки и обеспечивающим достижение наивысшей производительности, экономичности и качества. Основа типизации - правила обработки отдельных элементарных поверхностей и правила назначения очередности обработки этих поверхностей. Типовые ТП находят применение, главным образом, в крупносерийном и массовом производстве.

Принцип групповой технологии лежит в основе технологии переналаживаемого производства - мелко- и среднесерийного. В отличие от типизации ТП при групповой технологии общим признаком является общность обрабатываемых поверхностей и их сочетаний. Поэтому групповые методы обработки характерны для обработки деталей с широкой номенклатурой.

И типизация ТП, и метод групповой технологии являются основными направлениями унификации технологических решений, повышающей эффективность производства.

Классификация деталей

Классификацию производят в целях определения групп технологически однородных деталей для их совместной обработки в условиях группового производства. Выполняют ее в два этапа: первичная классификация, т. е. кодирование деталей обследуемого производства по конструктивно-технологическим признакам; вторичная классификация, т. е. группирование деталей с одинаковыми или несущественно отличающимися признаками классификации.

При классификации деталей нужно учитывать следующие признаки: конструктивные - габаритные размеры, массу, материал, вид обработки и заготовки; число операций обработки; точностные и другие показатели.

Группирование деталей выполняют в такой последовательности: выбор совокупности деталей на уровне классов, например тела вращения для механообрабатывающего производства; выбор совокупности деталей на уровне подкласса, например детали типа вала; классификация деталей по комбинации поверхностей, например валы с комбинацией гладких цилиндрических поверхностей; группирование по габаритным размерам с выделением областей с максимальной плотностью распределения размеров; определение по диаграмме областей с наибольшим числом наименований деталей.

Технологичность конструкций изделий для условий АП

Конструкция изделия считается технологичной, если для его изготовления и эксплуатации требуются минимальные затраты материалов, времени и средств. Оценка технологичности проводится по качественным и количественным критериям отдельно для заготовок, обрабатываемых деталей, сборочных единиц.

Детали, подлежащие обработке в АП, должны быть технологичны, т. е. просты по форме, габаритам, состоять из стандартных поверхностей и иметь максимальный коэффициент использования материала.

Детали, подлежащие сборке, должны иметь как можно больше стандартных поверхностей соединений, простейших элементов ориентации сборочных единиц и деталей.

3. Особенности проектирования технологических процессов изготовления деталей на автоматических линиях и станках с ЧПУ

Автоматическая линия - это непрерывно действующий комплекс взаимосвязанного оборудования и системы управления, где необходима полная временная синхронизация операций и переходов. Наиболее эффективными методами синхронизации являются концентрация и дифференциация ТП.

Дифференциация технологического процесса, упрощение и синхронизация переходов - необходимые условия надежности и производительности. Чрезмерная дифференциация приводит к усложнению обслуживающего оборудования, увеличению площадей и объема обслуживания. Целесообразная концентрация операций и переходов, не снижая практически производительность, может быть осуществлена путем агрегатирования, применением многоинструментальных наладок.

Для синхронизации работы в автоматической линии (АЛ) определяется лимитирующий инструмент, лимитирующий станок и лимитирующий участок, по которым устанавливается реальный такт выпуска АЛ (мин) по формуле

где Ф - действительный фонд работы оборудования, ч; N -программа выпуска, шт.

Для обеспечения высокой надежности АЛ разделяют на участки, которые связаны друг с другом через накопители, осуществляющие так называемую гибкую связь между участками, обеспечивая независимую работу смежных участков в случае отказа на одном из них. Внутри участка сохраняется жесткая связь. Для оборудования с жесткой связью важно планировать время и длительность плановых остановок.

Станки с ЧПУ дают высокую точность и качество изделий и могут использоваться при обработке сложных деталей с точными ступенчатыми или криволинейными контурами. При этом снижается себестоимость обработки, квалификация и число обслуживающего персонала. Особенности обработки деталей на станках с ЧПУ определяются особенностями самих станков и в первую очередь их системами ЧПУ, которые обеспечивают:

1)сокращение времени наладки и переналадки оборудования; 2)увеличение сложности циклов обработки; 3) возможность реализации ходов цикла со сложной криволинейной траекторией; 4) возможность унификации систем управления (СУ) станков с СУ другого оборудования; 5) возможность использования ЭВМ для управления станками с ЧПУ, входящими в состав АПС.

Основные требования к технологии и организации механической обработки в переналаживаемых АПС на примере изготовления основных типовых деталей

Для разработки технологии в АПС характерен комплексный подход - детальная проработка не только основных, но и вспомогательных операций и переходов, включая транспортировку изделий, их контроль, складирование, испытания, упаковку.

Для стабилизации и повышения надежности обработки применяют два основных метода построения ТП:

1)использование оборудования, обеспечивающего надежную обработку почти без участия оператора;

2)регулирование параметров ТП на основе контроля изделий в ходе самого процесса.

Для повышения гибкости и эффективности в АПС используют принцип групповой технологии.

4. Особенности разработки ТП автоматизированной и роботизированной сборки

Автоматизированная сборка изделий выполняется на сборочных автоматах и АЛ. Важным условием разработки рационального ТП автоматизированной сборки является унификация и нормализация соединений, т. е. приведение их к определенной номенклатуре видов и точностей.

Главным отличием роботизированного производства является замена сборщиков сборочными роботами и выполнение контроля контрольными роботами или автоматическими контрольными устройствами.

Роботизированная сборка должна выполняться по принципу полной взаимозаменяемости или (реже) по принципу групповой взаимозаменяемости. Исключается возможность подгонки, регулировки.

Выполнение операций сборки должно проходить от простого к сложному. В зависимости от сложности и габаритов изделий выбирают форму организации сборки: стационарную или конвейерную. Состав РТК - это сборочное оборудование и приспособления, транспортная система, операционные сборочные роботы, контрольные роботы, система управления.

Внедрение на предприятия технических средств, позволяющих автоматизировать производственные процессы, является базовым условием эффективной работы. Разнообразие современных методов автоматизации расширяет спектр их применения, при этом затраты на механизацию, как правило, оправдываются конечным результатом в виде увеличения объемов изготавливаемой продукции, а также повышения ее качества.

Организации, которые идут по пути технологического прогресса, занимают лидирующие места на рынке, обеспечивают более качественные трудовые условия и минимизируют потребность в сырье. По этой причине крупные предприятия уже невозможно представить без осуществления проектов по механизации - исключения касаются лишь мелких ремесленнических производств, где автоматизация производства себя не оправдывает ввиду принципиального выбора в пользу ручного изготовления. Но и в таких случаях возможно частичное включение автоматики на некоторых этапах производства.

Основные сведения об автоматизации

В широком смысле автоматизация предполагает создание таких условий на производстве, которые позволят без участия человека выполнять определенные задачи по изготовлению и выпуску продукции. При этом роль оператора может заключаться в решении наиболее ответственных задач. В зависимости от поставленных целей, автоматизация технологических процессов и производств может быть полной, частичной или комплексной. Выбор конкретной модели определяется сложностью технической модернизации предприятия за счет автоматической начинки.

На заводах и фабриках, где реализована полная автоматизация, обычно механизированным и электронным системам управления передается весь функционал по контролю над производством. Такой подход наиболее рационален, если рабочие режимы не предполагают изменений. В частичном виде автоматизация внедряется на отдельных этапах производства или при механизации автономного технического компонента, не требуя создания сложной инфраструктуры управления всем процессом. Комплексный уровень автоматизации производства обычно реализуется на определенных участках - это может быть отдел, цех, линия и т. д. Оператор в данном случае контролирует саму систему, не затрагивая непосредственный рабочий процесс.

Системы автоматизированного управления

Для начала важно отметить, что такие системы предполагают полный контроль над предприятием, фабрикой или заводом. Их функции могут распространяться на конкретную единицу оборудования, конвейер, цех или производственный участок. В данном случае системы автоматизации технологических процессов принимают и обрабатывают информацию от обслуживаемого объекта и на основе этих данных оказывают корректирующее воздействие. Например, если работа выпускающего комплекса не отвечает параметрам технологических нормативов, система по специальным каналам изменит его рабочие режимы согласно требованиям.

Объекты автоматизации и их параметры

Главной задачей при внедрении средств механизации производства является поддержание качественных параметров работы объекта, что в результате отразится и на характеристиках продукции. На сегодняшний день специалисты стараются не углубляться в сущность технических параметров разных объектов, поскольку теоретически внедрение систем управления возможно на любой составной части производства. Если рассматривать в этом плане основы автоматизации технологических процессов, то в перечень объектов механизации войдут те же цеха, конвейеры, всевозможные аппараты и установки. Можно лишь сравнивать степени сложности внедрения автоматики, которая зависит от уровня и масштаба проекта.

Относительно параметров, с которыми ведут работу автоматические системы, можно выделить входные и выходные показатели. В первом случае это физические характеристики продукции, а также свойства самого объекта. Во втором - это непосредственно качественные показатели готового продукта.

Регулирующие технические средства

Приборы, обеспечивающие регулирование, применяются в системах автоматизации в виде специальных сигнализаторов. В зависимости от назначения они могут отслеживать и управлять различными технологическими параметрами. В частности, автоматизация технологических процессов и производств может включать сигнализаторы температурных показателей, давления, характеристик потока и т. д. Технически приборы могут быть реализованы как бесшкальные устройства с электрическими контактными элементами на выходе.

Принцип работы регулирующих сигнализаторов также различен. Если рассматривать наиболее распространенные температурные устройства, то можно выделить манометрические, ртутные, биметаллические и терморезисторные модели. Конструкционное исполнение, как правило, обуславливается принципом действия, но немалое влияние на него оказывают и условия работы. В зависимости от направления работы предприятия, автоматизация технологических процессов и производств может проектироваться с расчетом на специфические условия эксплуатации. По этой причине и регулирующие приборы разрабатываются с ориентировкой на использование в условиях повышенной влажности, физического давления или на действие химических веществ.

Программируемые системы автоматизации

Качество управления и контроля производственных процессов заметно повысилось на фоне активного снабжения предприятий вычислительными устройствами и микропроцессорами. С точки зрения промышленных нужд возможности программируемых технических средств позволяют не только обеспечивать эффективное управление технологическими процессами, но и автоматизировать проектирование, а также проводить производственные испытания и эксперименты.

Устройства ЭВМ, которые применяются на современных предприятиях, в режиме реального времени решают задачи регулирования и управления технологическими процессами. Такие средства автоматизации производства называются вычислительными комплексами и работают на принципе агрегатирования. Системы включают в состав унифицированные функциональные блоки и модули, из которых можно составлять различные конфигурации и приспосабливать комплекс к работе в определенных условиях.

Агрегаты и механизмы в системах автоматизации

Непосредственное исполнение рабочих операций берут на себя электрические, гидравлические и пневматические устройства. По принципу работы классификация предполагает функциональные и порционные механизмы. В пищевой промышленности обычно реализуются подобные технологии. Автоматизация производства в этом случае предполагает внедрение электрических и пневматических механизмов, конструкции которых могут включать электроприводы и регулирующие органы.

Электродвигатели в системах автоматизации

Основу исполнительных механизмов нередко формируют электромоторы. По типу управления они могут быть представлены в бесконтактном и контактном исполнениях. Агрегаты, которые управляются от релейно-контактных приборов, при манипуляциях оператором могут изменять направление движения рабочих органов, но скорость выполнения операций остается неизменной. Если предполагается автоматизация и механизация технологических процессов с применением бесконтактных устройств, то используют полупроводниковые усилители - электрические или магнитные.

Щиты и пульты управления

Для установки оборудования, которое должно обеспечивать управление и контроль производственного процесса на предприятиях, монтируются специальные пульты и щиты. На них размещают приборы для автоматического управления и регулирования, контрольно-измерительную аппаратуру, защитные механизмы, а также различные элементы коммуникационной инфраструктуры. По конструкции такой щит может представлять собой металлический шкаф или плоскую панель, на которой и устанавливаются средства автоматизации.

Пульт, в свою очередь, является центром для дистанционного управления - это своего рода диспетчерская или операторская зона. Важно отметить, что автоматизация технологических процессов и производств должна предусматривать и доступ к обслуживанию со стороны персонала. Именно эта функция во многом и определяется пультами и щитами, позволяющими вести расчеты, оценивать производственные показатели и в целом отслеживать рабочий процесс.

Проектирование систем автоматизации

Основным документом, который выступает руководством для технологической модернизации производства с целью автоматизации, является схема. На ней отображается структура, параметры и характеристики устройств, которые в дальнейшем выступят средствами автоматической механизации. В стандартном исполнении схема отображает следующие данные:

  • уровень (масштаб) автоматизации на конкретном предприятии;
  • определение параметров работы объекта, которые должны быть обеспечены средствами контроля и регулирования;
  • характеристики управления - полное, дистанционное, операторское;
  • возможности блокировки исполнительных механизмов и агрегатов;
  • конфигурацию расположения технических средств, в том числе на пультах и щитах.

Вспомогательные средства автоматизации

Несмотря на второстепенную роль, дополнительные устройства обеспечивают важные контрольные и управляющие функции. Благодаря им обеспечивается та самая связь между исполнительными устройствами и человеком. В плане оснащения вспомогательными приборами автоматизация производства может предусматривать кнопочные станции, реле управления, различные переключатели и командные пульты. Существует множество конструкций и разновидностей данных устройств, но все они ориентированы на эргономичное и безопасное управление ключевыми агрегатами на объекте.

Есть все основания полагать, что именно ближайшее десятилетие станет переломным этапом в развитии новых подходов к производству, рубежом между эпохами неавтоматизированного и автоматизированного производства.

Совершенно очевидно, что именно сейчас для этого созрели научно-технические предпосылки, связанные с появлением и развитием новейших средств автоматизации. К ним относятся в первую очередь автоматические системы управления на основе промышленных контроллеров и, конечно же, промышленные роботы, поднявшие производство на качественно более высокий уровень.

Казалось бы, безусловная прогрессивность в сочетании с повышенным вниманием должны были обеспечить промышленным роботам триумфальное шествие, позволить им внести весомый вклад в интенсификацию производственных процессов, сокращение доли ручного труда. Однако пока этого не происходит в должной степени. По крайней мере, что касается ситуации в нашей стране.

Очевидно, что основная проблема медленного развития автоматизации и, в частности, роботизированного производства заключается в явном несоответствии затрат сил и средств с одной стороны и реальной отдачи с другой. И вызвано это не вдруг открывшимися недостатками промышленных роботов, а просчетами, допускаемыми при подготовке такого производства. Производство, с его суровыми законами, неизбежно отторгает дорогие, тихоходные и малонадежные конструкции.

Россия может и должна вернуть себе статус мировой промышленной державы. Чтобы это осуществить, необходимо обладать рядом ключевых преимуществ - перспективными направлениями и технологиями, развитым станкостроением, а главное - человеческими ресурсами, которые в состоянии воплотить задуманное в жизнь. Специфика создания любой новой продукции, будь то новейшие образцы вооружения, морских и воздушных судов или других высокотехнологичных изделий, состоит в том, что проектируется только то, что в принципе можно изготовить. Говорить о создании, например, истребителя нового поколения, не имея оборудования соответствующего уровня, бессмысленно. Таким образом, новейшее оборудование является основой для создания новейших технологий. Отказ от планомерного промышленного регулирования, прямого «взращивания» инновационных проектов приводит к отказу и от современных промышленных производств: судо- и авиастроения, космической сферы, скоростного железнодорожного транспорта, современных систем вооружений.

Поскольку автоматизация и роботизированное производство по своей сути тесно связаны с разработкой новых видов продукции, они способны определять уровень конкурентоспособности страны. Поэтому необходимо изучать и исследовать производственные циклы предприятий различных отраслей с крупносерийным, серийным и мелкосерийным выпуском продукции с целью определения областей рационального применения роботов и установления функциональных и технических требований к ним.

В мире происходит динамичное развитие робототехники. Созданы и создаются все новые высокоэффективные конструкции роботов, промышленные контроллеры для массового применения. Их количество быстро растет, так как сокращение доли ручного труда, повышение производительности и рост темпов производства являются насущной задачей эффективного промышленного производства в развитых постиндустриальных странах. При этом во многих случаях именно появление технологии является стимулом к разработке новых видов продукции. Технология, доведенная до совершенства, определяет себестоимость производства, а в конечном счете и эффективность и конкурентоспособность экономики страны в целом. Таким образом, формирование этого направления позволит придать импульс находящейся на подъеме промышленности и заложить фундамент для ее динамичного развития.

Развитие промышленного производства определяется ростом производительности труда. Производительность технологической операции в любой отрасли промышленности зависит от затрат времени на выполнение главных функциональных действий (основное время), вспомогательных действий (вспомогательное время) и потерь времени, обусловленных недостаточной организацией труда (организационные потери) и длительным выполнением некоторых дополнительных действий (собственные потери). Сокращения основного времени можно добиться путем совершенствования технологии обработки, а также конструктивными изменениями в оборудовании. Минимизация организационных потерь времени предполагает тщательную проработку условий организации производства, доставки материалов и комплектующих, налаженные кооперационные связи и многое другое, а сокращение вспомогательного времени и собственных потерь связано с механизацией и автоматизацией производства. Автоматизация производства возможна только на основе новейших достижений науки и техники, применения прогрессивной технологии и использования передового производственного опыта. Ну а гибкая автоматизация в свою очередь дает возможность быстрой перенастройки производства для выполнения технологических функций с определенной производительностью обработки на основе максимального использования вычислительной техники и электроники.

В виду того, что компьютерные технологии развиваются быстрыми темпами и ничто не мешает их применению в связке с технологическим оборудованием, можно сделать вывод, что в ближайшее время участие человека в производственных процессах будет сведено к минимуму. Предприятия недалекого будущего - это полностью автоматизированные цеха с гибкой организацией производства, обслуживаемого группами роботов с единым центром управления.

НОВЫЕ ЗАДАЧИ - НОВЫЕ РЕШЕНИЯ

Автоматизация производства приводит к значительному повышению его эффективности. Это связано, с одной стороны, с улучшением организации производства, ускорением оборота средств и лучшим использованием основных фондов, с другой - со снижением себестоимости обработки, расходов на заработную плату и энергозатраты. Третий немаловажный фактор - повышение уровня культуры производства, качества выпускаемой продукции и т.д.

Станки с ЧПУ стали символом движения к инновационной организации производства. Однако, несмотря на масштабы и всеохватность областей их применения, сегодня они не являются самым значительным достижением в области автоматизации. За кулисами находятся программируемые контроллеры, микропроцессоры, компьютеры, управляющие технологическими процессами, а также логические системы управления, пользующиеся даже большим успехом и шире применяющиеся в этой области. В то же время все перечисленные устройства могут рассматриваться как члены одной семьи оборудования для гибкой автоматизации, на корню меняющей сложившуюся систему промышленного производства.

Уже доказано, что использование промышленных роботов не только повышает уровень автоматизации поточного производства, но и позволяет более эффективно использовать технологическое оборудование и на этой основе значительно увеличить производительность труда. Применение роботов также решает проблему обеспечения кадрами на тяжелых и вредных операциях.

В области создания и применения промышленных роботов наша страна пока находится в начальной стадии, поэтому предстоит провести большой объем исследований и разработок, наработать собственную базу типовых решений. Наряду с освоением универсальных роботов необходимо наладить производство типовых моделей оборудования специального назначения (пневматические захваты, стационарные устройства и тому подобные приспособления), которые позволят в дальнейшем расширить возможности автоматизации. Кроме того, следует разработать упрощенные модели роботов и механических захватов для выполнения несложных операций.

Простая автоматизация рабочих мест уже перестала устраивать руководителей производства. Почему? Ведь высвобождаемое время - важнейший фактор, влияющий на эффективность деятельности промышленного предприятия. Однако экономический эффект от локальной, «кусочной» автоматизации минимален, так как процесс проектирования остается классически последовательным: конструкторы создают документацию, передают ее технологам, забирают обратно на корректировку, возвращают исправленную документацию технологам, те подготавливают технологическую документацию, согласовывают со снабженцами и экономистами и так далее. В результате ни полной экономической отдачи, ни действительно значимого сокращения срока подготовки производства автоматизация не приносит, хотя положительный эффект достигается в любом случае.

Не следует забывать, что разработка и подготовка производства сложной, высокотехнологичной продукции - это коллективный и взаимоувязанный процесс, в который вовлечены десятки и сотни специалистов предприятия или даже группы предприятий. В процессе разработки изделия возникает ряд затруднений, влияющих на общий успех. В первую очередь это отсутствие возможности видеть ключевые ресурсы, вовлеченные в процесс разработки в их фактическом состоянии на данный момент времени. Это также организация совместной работы коллектива специалистов с привлечением компаний, поставляющих какие-либо компоненты для разрабатываемого изделия. Существенно сократить сроки подготовки такого производства можно только одним способом - за счет параллельного выполнения работ и тесного взаимодействия всех участников процесса. Подобную задачу можно решить за счет создания единого информационного пространства предприятия, своеобразного массива цифровых данных о продукции.

С ЧЕГО НАЧИНАТЬ АВТОМАТИЗАЦИЮ

Ниже приведен краткий алгоритм, позволяющий понять, что же нужно выяснить, чтобы приступить к реализации проекта автоматизации производства.

1. Для начала необходимо провести оценку объекта автоматизации - что требуется заменить, какое оборудование нужно приобрести и что сможет увеличить производительность предприятия.

2. На основе разработанного технического задания нужно выбрать наиболее оптимальные элементы для решения поставленных задач. Это могут быть специальные датчики и инструменты контроля, например, за работой оборудования, а также различные комплекты для дальнейшего сбора и обработки всей полученной информации, специальные устройства для обеспечения интерфейса - пульт контроля для нормальной деятельности диспетчеров производства и т. п.

3. Составить проектную документацию - схему автоматизации, желательно в виде циклограмм, электрическую принципиальную схему, описание контроля управления систем.

4. Следующим этапом идет разработка программ, которые помогут реализовать алгоритмы управления для каждой конкретной единицы оборудования (нижнюю ступень управления). После этого составляется общий алгоритм для сбора, обработки полученных данных (верхняя ступень управления производством).

5. Когда все вышеперечисленное выполнено, целесообразно заняться обеспечением поставок необходимого оборудования. Причем его пусконаладка должна производиться по заранее и строго определенным приоритетам.

6. Необходимо провести автоматизацию всех ступеней производственного процесса путем программного объединения систем управления каждым отдельным уровнем, предусмотрев для них возможность гибких трансформаций.

ТИПИЧНЫЕ ПРОБЛЕМЫ И РЕКОМЕНДАЦИИ ПО ИХ ПРЕОДОЛЕНИЮ

Компания «Солвер» занимается автоматизацией производств машиностроительных предприятий 20 лет. Опыт показывает, что объективными факторами, препятствующими успешному претворению проектов автоматизации в жизнь, являются:

Неготовность коллектива предприятия принять автоматизацию как необходимый и достаточный инструмент производственного цикла на данном этапе развития предприятия;

Нехватка достаточного количества компетентных специалистов в области автоматизации;

Часто на предприятии нет четкого понимания конечных целей мероприятий по автоматизации.

Компанией «Солвер» были сформулированы несколько базовых принципов, позволяющих рационально взглянуть на проблемы роботизации, и постулаты, которыми целесообразно руководствоваться, прорабатывая этапы автоматизации производства.

1. Средства роботизации должны не просто заменять человека или имитировать его действия, но и выполнять эти производственные функции быстрее и лучше. Лишь тогда они будут по-настоящему эффективными. Этим и достигается принцип конечного результата.

2. Комплексность подхода. Должны быть рассмотрены и в конечном итоге решены на новом, более высоком уровне все важнейшие компоненты производственного процесса - технологии, объекты производства, вспомогательное оборудование, системы управления и обслуживания. Одна непроработанная на должном уровне компонента производственного процесса способна сделать неэффективным весь комплекс мер по автоматизации. И промышленные роботы, и автоматизированные системы управления должны внедряться с учетом прогресса технологии и конструкции и в комплексе приспосабливаться к требованиям производства - лишь тогда они будут эффективными.

3. И самое важное - принцип необходимости. Средства роботизации, включая самые перспективные и прогрессивные, должны применяться не там, где их можно приспособить, а там, где без них нельзя обойтись.

Закончить статью хотелось бы следующим выводом. Никто не в состоянии детально и точно описать зарождающееся сегодня сверхиндустриальное общество. Но уже сейчас надо понимать, что в обозримой перспективе общество перейдет от массовой фабричной системы к уникально-штучному производству, интеллектуальному труду, в основе которых будут лежать информация, супертехнологии, а также высокая степень автоматизации производства. Другого пути не предвидится.

Типы систем автоматизации включают в себя:

  • неизменяемые системы. Это системы, в которых последовательность действий определяется конфигурацией оборудования или условиями процесса и не может быть изменена в ходе процесса.
  • программируемые системы. Это системы, в которых последовательность действий может изменяться в зависимости от заданной программы и конфигурации процесса. Выбор необходимой последовательности действий осуществляется за счет набора инструкций, которые могут быть прочитаны и интерпретированы системой.
  • гибкие (самонастраиваемые) системы. Это системы, которые способны осуществлять выбор необходимых действий в процессе работы. Изменение конфигурации процесса (последовательности и условий выполнения операций) осуществляется на основании информации о ходе процесса.

Эти типы систем могут применяться на всех уровнях автоматизации процессов по отдельности или в составе комбинированной системы.

В каждой отрасли экономики существуют предприятия и организации, которые производят продукцию или предоставляют услуги. Все эти предприятия можно разделить на три группы, в зависимости от их «удаленности» в цепочке переработки природных ресурсов.

Первая группа предприятий, это предприятия, добывающие или производящие природные ресурсы. К таким предприятиям относятся, например, сельскохозяйственные производители, нефтегазодобывающие предприятия.

Вторая группа предприятий, это предприятия, выполняющие переработку природного сырья. Они изготавливают продукцию из сырья, добытого или произведенного предприятиями первой группы. К таким предприятиям относятся, например, предприятия автомобильной промышленности, сталелитейные предприятия, предприятия электронной промышленности, электростанции и т.п.

Третья группа, это предприятия сферы услуг. К таким организациям относятся, например, банки, образовательные учреждения, медицинские учреждения, рестораны и пр.

Для всех предприятий можно выделить общие группы процессов, связанные с производством продукции или предоставлением услуг.

К таким процессам относятся:

  • бизнес процессы;
  • процессы проектирования и разработки;
  • процессы производства;
  • процессы контроля и анализа.
  • Бизнес процессы – это процессы, обеспечивающие взаимодействие внутри организации и с внешними заинтересованными сторонами (потребителями, поставщиками, надзорными органами и пр.). К этой категории процессов можно отнести процессы маркетинга и продаж, взаимодействия с потребителями , процессы финансового, кадрового, материального планирования и учета и пр.
  • Процессы проектирования и разработки – это все процессы, связанные с разработкой продукции или услуги. К таким процессам относятся процессы планирования разработки, сбора и подготовки исходных данных, выполнение проекта, контроль и анализ результатов проектирования и пр.
  • Процессы производства – это процессы, необходимые для производства продукции или предоставления услуг. К этой группе относятся все производственные и технологические процессы. Они также включают в себя процессы планирования потребности и планирования мощностей, логистические процессы и процессы обслуживания.
  • Процессы контроля и анализа – эта группа процессов связана со сбором и обработкой информации о выполнении процессов. К таким процессам относятся процессы контроля качества, операционного управления, процессы контроля запасов и пр.

Большинство процессов, относящихся к этим группам, может быть автоматизирована. На сегодняшний день, существуют классы систем, которые обеспечивают автоматизацию этих процессов.

Техническое задание на подсистему "Склады" Техническое задание на подсистему "Документооборот" Техническое задание на подсистему "Закупки"

Стратегия автоматизации процессов

Автоматизация процессов представляет собой сложную и трудоемкую задачу. Для успешного решения этой задачи необходимо придерживаться определенной стратегии автоматизации. Она позволяет улучшить процессы и получить от автоматизации ряд существенных преимуществ.

Кратко, стратегию можно сформулировать следующим образом:

  • понимание процесса. Для того чтобы автоматизировать процесс необходимо понимать существующий процесс со всеми его деталями. Процесс должен быть полностью проанализирован. Должны быть определены входы и выходы процесса, последовательность действий, взаимосвязь с другими процессами, состав ресурсов процесса и пр.
  • упрощение процесса. После проведения анализа процесса необходимо упростить процесс. Лишние операции, не приносящие ценности, должны быть сокращены. Отдельные операции могут объединяться или выполняться параллельно. Для улучшения процесса могут быть предложены другие технологии его исполнения.
  • автоматизация процесса. Автоматизация процессов может выполняться только после того, как процесс максимально упростился. Чем проще порядок действий процесса, тем проще его автоматизировать и тем эффективнее будет работать автоматизированный процесс.