Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Понятие множества. Способы задания множеств. Множества: понятие, определение, примеры


Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть несводимое к другим понятиям, а значит, и не имеющее определения (так же, как, например, нельзя определить, что такое точка или прямая ).

Теорию множеств создал Георг Кантор. В частности, определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты он назвал элементами множества. Т.е. элемент множества – это объект, принадлежащий данному множеству.

Бертран Рассел (также основоположник теории множеств) дал такое определение множества: «Множество есть любое собрание определённых и различимых между собою объектов нашей интуиции или интеллекта, мыслимое как единое целое».

Под множеством понимается класс, совокупность, собрание различных между собой абстрактных объектов (элементов), безразлично какой природы. Каждый составляющий его элемент рассматривается лишь с точки зрения некоторых признаков. Эти объекты считаются неразличимыми. Им приписываются одни и те же признаки, отличие их друг от друга определяется не по свойствам и отношениям, а по их именам.

Множества обозначаются большими латинскими буквами (например, А , В , Х , Y и т.д.), а элементы этих множеств – малыми буквами (например, a , b , x , y ).

Если множество содержит конечное число элементов, его называют конечным , если в нём бесконечно много элементов – бесконечным .

Множества могут состоять из объектов самой различной природы. Этим объясняется чрезвычайная широта теории множеств и её применимость в самых различных областях – математике, механике, физике, химии, биологии, лингвистике и т.д.

Знаком Î обозначается отношение принадлежности некоторого элемента тому или иному множеству. Например, выражение означает, что элемент а принадлежит множеству А . Если же а не является элементом множества А , то это записывается .

Если два множества А и В состоят из одних и тех же элементов, то они считаются равными. Если А и В равны, то пишем А=В , в противном случае - . Например, возьмём множество {1,3,5}, состоящее из трёх положительных нечётных чисел. Поскольку {1,3,5} и{1,5,3} состоят из одних и тех же элементов, они являются равными множествами, т.е. {1,3,5}={1,5,3}. По этой же причине {1,3,5}={1,3,3,5,5,5}.

Элементы какого либо множества сами могут быть множествами. Например, {{1,2},{3,4},{5,6}} – множество из трёх элементов {1,2},{3,4},{5,6}.

Множества {{1,2},{2,3}} и {1,2,3} не равны, т.к. элементами первого являются {1,2} и {2,3}, а элементами второго - 1,2 и 3.

Множества {{1,2}} и {1,2} также не равны, т.к. поскольку первое множество состоит из одного и только одного элемента {1,2} (одноэлементное множество), а второе имеет два элемента 1 и 2. Потому, в общем виде, следует различать объект и множество, единственным элементом которого является этот объект.

Задача 1.1. Среди следующих множеств указать равные:

А = {3, 5, x , y }; B = {3, 2, 5, x , y }; C = {y , y , 5, 3, x , x }; D = {3, 4, 5, x , y }.

Решение. A = C , поскольку качественно оба множества состоят из элементов 3, 5, x и y . Количество элементов множества А равно 4. Множество В , на первый взгляд, содержит больше элементов. Однако среди них есть повторяющиеся: 2 раза х и столько же у . Для множества же неважно, сколько раз повторяется один и тот же элемент, важно лишь, чтобы элементы отличались друг от друга. Что же касается множеств B иD , то они не равны, так как содержат разные элементы.

1.2. СПОСОБЫ ЗАДАНИЯ МНОЖЕСТВ

Множество считают заданным (известным), если имеется способ, позволяющий для любого объекта решить, принадлежит ли он этому множеству или нет, т.е. определить истинно или ложно выражение . Существует несколько способов задания множеств. Множество может быть задано:

1) перечислением (полным списком) своих элементов . Если хотим сказать, что данное множество М состоит из элементов , то записываем: . Данный способ применим лишь к конечным множествам, да и то не ко всем. Например, хотя множество птиц конечно, вряд ли его можно задать списком. Тем более, список невозможен в случае бесконечномерного множества. Тогда применимы другие способы;

2) характеристическим свойством (предикатом) , которым должны обладать все его элементы и не должен обладать ни один объект, не являющийся его элементом. Причём необходимо формулировать описание характеристических свойств элементов множества достаточно корректно, для того, чтобы множество было определено вполне однозначно.

Множество M объектов, обладающих свойством , Г. Кантор обозначил - «множество всех x, обладающих свойством », где - характеристическое свойство(предикат) множества М;

3) порождающей процедурой f , то есть указать правило, по которому формируются элементы данного множества: ;

Замечание. Многие числовые множества могут быть заданы всеми тремя указанными способами (например, множество чётных однозначных чисел).

4) геометрическим способом – с помощью графиков или диаграмм. Этот способ применим как к конечным, так и бесконечным множествам;

Пример 1.1. Некоторые примеры множеств, заданных различными способами.

а) M 1 ={1;2;3;4};

б) M 2 ={x| , -4};

в) M 3 ={x|x=2n+1, };

г) M 4 = {(x,y)ôxÎR, yÎR ; £ 4};

Задача 1.2. Выяснить, каким способом заданы следующие множества и перечислить все элементы этих множеств:

1) { xô x есть делитель числа 100};

2) { xô x есть простой делитель числа 100};

3) { xô x есть простой множитель числа 100};

4) { xô x ÎN; – 1 = 0 и – 4 = 0};

5) { xô x есть буква слова «академия»};

6) { xô x ÎN; 2 = 1};

7) { xô x ÎN; }.

Решение.

1. Данное множество состоит из всех делителей числа 100, то есть в него включаются лишь те числа, которые делят число 100 нацело. Очевидно, что налицо задание множества с помощью характеристического предиката «быть делителем числа 100». Перечислим все эти числа: 2, 4, 5, 10, 20, 25, 50. Добавив сюда число 1 и самое 100, получим искомое множество. Обозначим его А. Тогда А = {1, 2, 4, 5, 10, 20, 25, 50, 100}.

2. Множество задано с помощью характеристического предиката «быть простым делителем числа 100». Среди делителей предыдущей задачи отберём лишь простые числа, которыми будут 2 и 5. Все же остальные делители являются составными. Число 1, как известно из курса школьной арифметики, не относится ни к простым, ни к составным числам. Обозначив это множество В, получим: В = {2, 5}.

3. Множество задано с помощью характеристического предиката «быть простым множителем числа 100». Разложим 100 на простые множители. Получим следующее тождество: 100 = 2×2×2×5. Эти числа и будут элементами искомого множества, которое обозначим С = {2, 2, 5, 5}. Ответ можно было бы оставить в таком виде, однако в теории множеств количество одинаковых элементов, как правило, игнорируется. Поэтому будет корректнее ответ представить в виде: С = {2, 5}.

4. Данное множество можно считать заданным с помощью порождающей процедуры, которой является процедура решения квадратных уравнений и отбора корней по признаку принадлежности их к множеству натуральных чисел. Однако, справедливости ради, следует отметить, что часто при определении способа задания множества бывает достаточно трудно утверждать, что множество задано этим и только этим способом. В данном примере вполне можно утверждать, что способ задания множества – с помощью характеристического предиката «отбор корней уравнения по признаку принадлежности к множеству N». Решаем оба уравнения: , его корни +1 и -1; , его корни +2 и -2. Поскольку числа -1 и -2 не являются натуральными, искомое множество, которое мы обозначим D, будет таким: D = {1, 2}.

5. Способ задания – с помощью характеристического предиката. Обозначим множество Е. Получим: Е = {а, к, д, е, м, и, я}, где буква «а» упомянута лишь один раз.

6. Способ задания данного множества аналогичен примеру 4). Решим данное показательно-логарифмическое уравнение 2 = 1. ОДЗ данного уравнения – все х³0. = 1, откуда = 0, корни х равны 2. Натуральным числом является 2. Значит, наше множество, которое обозначим через F, будет состоять только из одного элемента: F = {2}.

7. Способ задания данного множества аналогичен примеру 4). Решаем данное иррациональное неравенство . ОДЗ – все х ³ 1. Обе части возведём в квадрат: х – 1 ³ 4, откуда х ³ 5. Это не противоречит ОДЗ, поэтому область решения данного неравенства х ³ 5. Другими словами, х Î . Очевидно, что натуральных чисел на данном интервале будет бесчисленное множество. Поэтому данное множество G будет бесконечным: G = {5, 6, 7, … n,…}.

Задача 1.3. Записать множества с помощью свойстваP (х ):

2) {1, 3, 9, 27, 81, 243};

3) {s, t, u, d, e, n, t}.

Решение.

1) подобрать характеристический предикат можно, например, так. Перемножим все числа. Получим: 2×3×11 = 66. Тогда

А = {aôa – простой делитель числа 66};

2) все представленные числа являются степенями числа 3 (30=1, 31=3, 32=9 и т.д.). Поэтому множество В можно задать с помощью свойства: В = {bôb – степень числа 3 с показателем от 0 до 5};

3) C = {côc – буква слова «student»}.

Задача 1.4. Изобразить следующие множества графически:

1) А = {(x,y)ôxÎR, yÎR ; £ 4};

2) B = {(x,y)ôxÎR, yÎR ; x + y >0, x + y – 2 £ 0};

3) C = {(x,y)ôxÎR, yÎR ; |x | £ 1 и |y + 2| £ 4};

4) D = {(x,y)ôxÎR, yÎR и };

5) E = {(x,y)ôxÎR, yÎR и y £ |sin x|};

6) F = {(x,y)ôxÎR, yÎR и }.

Решение. Все заданные множества состоят из пар действительных чисел, которые удовлетворяют некоторым условиям. Изображая точки, соответствующие данным парам в декартовой системе координат на плоскости, получим некоторые области, которые и будут геометрическим (графическим) изображением исследуемого множества.

1. Построим границу множества А. Для этого от неравенства перейдём к равенству: = 4. Из курса аналитической геометрии известно, что это уравнение есть уравнение окружности с центром в начале координат и радиусом 2. Она и будет являться границей множества. Далее следует выяснить, какую часть плоскости нам следует выбрать: ту, что лежит внутри окружности либо ту, что лежит извне. Для этого зададимся координатами какой-либо точки, которая явно находится в выбранной области. Например, точка начала координат О(0;0). Подставим значения х = 0 и у = 0 в неравенство £ 4. Получим: £ 4, то есть в точке О (0;0) данное неравенство справедливо. Следовательно, нам нужно выбрать часть плоскости внутри окружности. Если взять координаты других точек внутри окружности и подставить их в неравенство, результат будет таким же. Напротив, для точек извне неравенство будет ложным. Например, точка Q(10;10): = 200, а это никак не меньше 4! Подытоживая всё сказанное, можем утверждать, что множество А – это круг радиуса 2 с центром в начале координат.

2. Для построения границ множества В рассмотрим равенства: x + y =0, x + y – 2 = 0. Первая прямая (её уравнение можно записать как у = - х) есть биссектриса 2-го и 4-го координатных углов. Она разделяет координатную плоскость на две части: ту, которая лежит выше (или правее) прямой и ту, которая ниже (или левее) прямой. Чтобы выбрать нужную часть, возьмем пробную точку с координатами, например, Q(10;10) и подставим её координаты в неравенство x + y > 0. Получим: 10 +10 > 0 то есть неравенство справедливо для части плоскости выше (правее) прямой x + y =0. Вторая прямая (её уравнение x + y – 2 = 0 может быть записано в отрезках на осях ) отсекает на обеих осях отрезки длиной по 2 единицы и проходит параллельно первой прямой через 2-й, 1-й и 3-й квадранты. Она также разделяет координатную плоскость на две части: одна выше (правее) и вторая ниже (левее). Для выбора нужной нам части можно использовать, например, точку О(0;0). Подставляем х = 0 и у = 0 в неравенство x + y – 2 £ 0. Получим: 0 + 0 – 2 £ 0 - справедливо. Следовательно выбираем ту часть плоскости по отношению ко второй прямой, где лежит точка О(0;0). В итоге получаем область, координаты точек которой удовлетворяют обоим неравенствам (например, это точки (1;1), (0;1), (1;0); (2;-1) и т.д.). Это полоса, лежащая между двумя параллельными прямыми, включая и точки, принадлежащие второй прямой (поскольку неравенство нестрогое). Данная область и определяет искомое множество В.

3. Неравенство |x | £ 1 эквивалентно двум: -1 £ х £ 1. Казалось бы, что это множество точек отрезка [-1; 1]. Если бы мы рассматривали множество из одного элемента, это было бы так. Однако наше множество С состоит из пар действительных чисел (х; у). Поэтому геометрически неравенство -1 £ х £ 1 представляет собой множество точек, лежащих внутри вертикальной полосы между прямыми х = 1 и х = -1. Неравенство |y + 2| £ 4 также эквивалентно двум: -4 £ y + 2 £ 4. Перенося 2 влево и вправо, получаем: -6 £ y £ 2. Геометрически это будет множество точек, лежащих внутри горизонтальной полосы между прямыми y = -6 и y = 2. Итак, мы получили две пересекающиеся полосы. Какую же часть необходимо выбрать для искомого множества С? В условии задачи оба неравенства соединены союзом «и». А это значит, что необходимо выбрать те точки из обеих полос, координаты которых одновременно удовлетворяют обоим неравенствам. В результате получаем прямоугольник. Это и есть наше множество С.

4. Рассмотрим неравенство . Чтобы оно стало «узнаваемым», возведём в квадрат левую и правую его части. Это можно сделать потому, что справа - неотрицательная величина арифметического корня. Слева величина у также неотрицательна, ибо в противном случае неравенство теряло бы всякий смысл. После возведения во вторую степень обеих частей и некоторого преобразования получаем: Это неравенство описывает часть координатной плоскости, лежащей вне эллипса Однако исходное неравенство имеет вид , причём, как было сказано, величина у неотрицательна. Значит, описываемая область будет включать лишь верхнюю часть координатной плоскости, лежащей вне эллипса. Рассмотрим последнее неравенство х ³ 0, которое описывает правую часть координатной плоскости. Сопоставляя все выкладки, получим множество точек, расположенных в первом квадранте вне эллипса. Это и будет искомое множество D.

5. Построим график функции у = sin x, а затем ту его часть, которая находится ниже оси абсцисс, зеркально отразим на верхнюю полуплоскость. Получим график у = |sin x|. Неравенство же y £ |sin x| определит искомое множество Е, точки которого будут находиться между осью абсцисс и дугами отраженной вверх синусоиды.

6. В отличие от предыдущих задач, здесь имеем равенство x2 = y2 , которое, как известно, определяет некоторую линию. Для «узнавания» данной линии сделаем ряд тождественных преобразований: = 0, (х – у) (х + у) = 0. Далее приходим к совокупности х – у = 0 и х + у = 0. Получаем пару пересекающихся прямых - биссектрис 1− 3-го и 2 – 4-го квадрантов. Множество F и представляет собой точки этих прямых.

Задачи для самостоятельного решения.

1. Перечислить все элементы следующих множеств:

а) { x ô x есть делитель чисел 6 и 8}; (ответ: 2);

б) { x ô x ÎN; x 3 - 5x 2 + 4 = 0}; (ответ: 1);

в) { x ô x ÎR; x + 1/x > 2; x > 0}; (ответ: х Î(0, ¥));

г) { x ô x – буква слова «университет»};

д) { x ô x ÎZ; sin x < 0; cos x > 0}; (ответ: -1).

2. Изобразить следующие множества графически:

а) { (x , y y £ 2x 2 };

б) { (x , y y ³ |x | + 1};

в) { (x , y x 2 + y 2 – 25 > 0}.

Два первые способа задания множества предполагают, что мы имеем возможность отождествлять и различать объекты. Но такая возможность существует не всегда, в этом случае мы сталкиваемся с различного рода осложнениями. Так, может быть, что два различных характеристических свойства задают одно и то же множество, т.е. каждый элемент, обладающий одним свойством, обладает и другим, и наоборот. Например, в арифметике свойство «целое число делится на 2» задаёт то же множество, что и свойство «последняя цифра делится на 2». Во многих случаях речь идёт о совпадении двух множеств (например, множества равносторонних треугольников с множеством равноугольных треугольников). Кроме того, при задании множеств характеристическими свойствами (предикатами) трудности возникают из-за недостаточной чёткости, неоднозначности формулировки. Разграничение объектов на принадлежащие и не принадлежащие данному множеству затрудняется наличием большого числа промежуточных форм.

Особо выделяется универсальное (или фундаментальное ) множество , т.е. такое множество, которое состоит из всех элементов исследуемой предметной области (обозначается буквой U и читается «универсум», а в геометрической интерпретации изображается множеством точек внутри некоторого прямоугольника).

Отметим, что «универсальное множество» понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и при том часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

1.3. ПУСТОЕ МНОЖЕСТВО

Пустое множество – множество, которое не содержит ни одного элемента (обозначается символом ). Пустое множество можно определить любым противоречивым свойством, например Y не является множеством.


Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Рассмотрим теперь кратко простые теоретико-множественные понятия и теоретико-множественные операции: пересечение, объединение, дополнение, декартово произведение и др. Для случая конечных множеств они лежат в основе арифметических действий над натуральными числами и поэтому очень важны для школьной математики. Мы ограничимся совсем краткими определениями и пояснениями.

Множество не содержащее ни одного элемента называют пустым множеством. Его обозначается знаком. Пустое множество можно определить любым противоречивым свойством, например= {х | xх}, в области множеств оно играет как бы роль нуля.

Множество N называется подмножеством множества М тогда и только тогда, когда каждый элемент множества N принадлежит множеству М. Отношение между множеством М и любым его подмножеством N называется включением и обозначается символом: МN.

Отметим следующие элементарные утверждения о понятиях подмножества и включения, прямо вытекающих из определения.

а) Каждое множество М является подмножеством самого себя: ММ. Любое подмножество N множества М, отличное от М, называется собственным подмножеством множества М; соответствующее включение также называется собственным и обозначается: МN. Принято считать, что пустое множествоявляется подмножеством любого множества М.

б) Отношение включения транзитивино, т. е. из NМ и РN следует, что РМ. Транзитивно также отношение собственного включения.

в) Очень важно не смешивать отношения принадлежностии включения: если {а}М, то аМ, и наоборот; но из {a}М не следует {а}М. Так, например, если М = {1, 2}, то это означает, что 1М и 2М, но для всех других объектов х справедливо хМ; для включения же правильны следующие утверждения:

М, {1}М, {2}М., {1, 2}М.

Другой пример. Пустое множествоне имеет элементов хM для любого объекта х. Между темсодержит одно подмножество, а именно само себя.

Введем несколько операций над множествами.

а) Пересечением множеств М и N называют множество тех объектов, которые принадлежат множествам М и N одновременно.

Обозначение: МN = {х|хМ и хN}.

б) Объединением множеств М и N называют множество тех элементов, которые содержатся по крайней мере в одном из множеств М или N. Обозначение: MN = {х | хМ или хN }.

в) Разностью множеств М и N называют множество тех элементов, которые принадлежат множеству М и не принадлежат множеству N. Обозначение: М \ N. = {х | хМ и хN}.

г)Симметрической разностью множеств М и N называют множество тех элементов, которые принадлежат только множеству М - или только множеству N.

Обозначение: MN ={ x | (xМ и хN) или (хN и хМ)}.

Введенные теоретико-множественные операции наглядно иллюстрируются рисунком 2, где множества М и N изобрансены пересекающимися кругами:

МN - точки области II;

МN - точки областей I, II, III;

М \ N - точки области I;

N \ М - точки области III;

MN - точки областей I и III.

д) В конкретных математических областях бывает полезно ввести в рассмотрение столь обширное множество U, что все рассматриваемые множества окажутся его подмножествами. Такое множество U принято называть универсальным множеством или универсумом. Отметим, что "универсальное множество" понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и притом часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости. Различные фигуры, изучаемые в планиметрии, можно считать множествами точек, т. е. подмножествами так выбранного универсального множества.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

е) Если выбрано некоторое универсальное множество U , то возникает новая теоретико-множественная операция - дополнение. Для всякого множества М (при этом подразумевается, что М - подмножество универсального множества U его дополнение, обозначаемое через М , - это множество всех элементов универсума, которые не принадлежат множеству М:

М = {х | хU и xM}

Таким образом, дополнение - это частный случай разности:

M = U \ M,
все отличие здесь состоит в том, что разность берется относительно фиксированного множества, содержащего все множества, которые в данной связи рассматриваются.

Рассмотрим теперь операции декартового произведения множеств. Пусть A и B - два множества. Тогда множество C = {(a, b) | aA, bB}
всех пар (a, b), где a и b независимо друг от друга принимают все значения соответственно из множеств A и B называется декартовым произведением множеств А и В и обозначается через А х В. Если А и В - конечные множества, содержащие соответственно m и n элементов, то сразу видно, что множество А х В содержит mn элементов.

Самостоятельный интерес представляет тот частный случай, когда множества А и В совпадают: А = В. Чтобы его рассмотреть, вы введем новый термин.

Упорядоченной парой элементов множества А будем называть объект (а 1 , а 2), состоящий из двух (не обязательно различных) элементов а 1 , а 2 А, с указанием, какой из них следует считать первым, а какой - вторым. Так, например, если А = {1, 2, 3, 4., 5}, то упорядоченные пары (2, 3) и (3, 2) следует считать по определению различными. Упорядоченными парами элементов из А считаются также объекты (1, 1), (2, 2), (3, 3), (4, 4), (5, 5). Упорядоченные пары мы будем заключать в круглые скобки и обозначать жирными строчными латинскими буквами: a = (а 1 а 2), в отличие от неупорядоченных пар, которые, как и множества элементов, записываются в фигурных скобках: {а 1 а 2 }.

Назовем множество

С = {(а 1 , а 2) | a 1 А, a 2 А}
всех упорядоченных пар (а 1 а 2) элементов из А декартовым квадратом множества А и будем обозначать его через A 2 .

Рассмотренные свойства множеств и операции над ними в неявном, виде присутствуют в начальном преподавании арифметики. Мы особенно подчеркиваем, что речь идет об их неявном присутствии: бессмысленно было бы в I или II классе давать явные определения арифметических действий. Само слово «действие» для арифметических операций указывает на то, что на начальном уровне развития детей сложение, вычитание, умножение и деление возникают как действия над конкретными множествами из мира, свойственного школьникам. Вековой опыт обучения на всех уровнях показывает, что человек обычно сначала делает нечто, а лишь затем задумывается над тем, какими же общими свойствами обладают его действия.

Теоретико-множественное обоснование арифметических действий над натуральными числами дается довольно элементарно, так как более строгое обоснование оказывается достаточно трудоемким и мы не имеем возможности провести его здесь со всей необходимой тщательностью. Как мы уже говорили, с точки зрения теории множеств натуральные кардинальные числа отвечают классам равнамощных конечных множеств, к ним, естественно, присоединяется и число нуль как кардинальное число, соответствующее пустому множеству. Тогда элементарные отношения и действия над натуральными числами вводятся следующим образом.

1.Отношение «равно», «больше», «меньше» . Пусть m и n - два натуральных числа и пусть М и N - два множества, кардинальные числа которых суть соответственно m и n. Тогда m меньше n (а n больше m), если множество М равномощно некоторому собственному подмножеству множества N. Как видно из этого же определения, m = n означает, что множества М и N равномощны. Для оправдания такого определения необходимо, конечно, показать, что оно не зависит от выбранных множеств М и N. Иначе говоря, надо доказать, что если М" и N" - два других множества с числом элементов m и n соответственно и если при этом М равномощно собственному подмножеству множества N", то и М" равномощно собственному подмножеству множества N", и наоборот. Это доказательство мы предоставим читателю. Отметим, что определение неравенства для бесконечных кардинальных чисел получается более сложным.

2.Сложение. Для определения суммы кардинальных чисел поступают так. Пусть m и n - два натуральных числа. Выбираем опять произвольно два непересекающихся множества М с m N с n элементами соответственно, и пусть S - их объединение: S = MN. Тогда по определению сумма s = m + n - это кардинальное число множества S. Покажем, что сумма s от выбора множеств M и N не зависит, а зависит только от их мощностей. Пусть М" и N"- другие множества, равномощные множествам М и N соответственно, и пусть при этом также M"N" =; тогда S" = М"N" равномощно множеству S = МN. Следует все время иметь в виду, что кардинальное число объединения есть сумма кардинальных чисел объединяемых множеств, только если последние не имеют общих элементов (имеют пустое пересечение). В случае пересекающихся множеств имеет место более общее, правило.

Основные понятия теории множеств

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Если – элемент множества M , то говорят « принадлежит M » и пишут: . Если некоторый объект не является элементом множества, то говорят « не принадлежит M » и пишут (иногда ).

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M , а всякий элемент, не обладающий этим свойством, не принадлежит M . Множество элементов, обладающих свойством , обозначается так:

или .

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);



– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Слово «множество» наводит на мысль, что оно содержит много элементов. Но это не всегда так. В математике могут рассматриваться множества, содержащие только один элемент. Например, множество целых корней уравнения . Более того, удобно говорить о множестве, не содержащем ни одного элемента. Такое множество называется пустым и обозначается через Ø. Например, пустым является множество действительных корней уравнения .

Определение 1. Множества и называются равными (обозначается А=В ), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Обозначения: (« включается в »); (« включает »).

Ясно, что Ø и само множество являются подмножествами множества . Всякое другое подмножество множества называется его правильной частью . Если и , то говорят, что « А собственное подмножество »или что «А строго включается в » и пишут .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств : чтобы доказать, что множества и равны, достаточно показать, что , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований .

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U , которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество R действительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна .

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:


– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

и .

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1. Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2. Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3. Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .– заштрихованная часть; . с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множеств илиалгеброй Булямножеств (вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U. Поэтому их и называют законами алгебры множеств.

Множеством называют совокупность неких объединенных по определенному правилу предметов. При этом они сохраняют свои индивидуальные черты. Множества мы встречаем в повседневной жизни: совокупность монет в кошельке, тарелок в шкафу, яблок в холодильнике и т.д. Также это математическое понятие, являющееся аксиоматическим.

Математическое множество

О том, что такое множество, мы знаем благодаря Георгу Кантору, посвятившему свои математические труды этой теме. Теория множеств стала настоящей революцией в этой области науки и по сей день имеет огромное значение для изучения более сложных понятий. Множество можно определить, только задав все входящие в него предметы, и изобразить следующим образом:

  • M = {a, b, c…}

Принадлежность предмета к множеству обозначается знаком « Є ». Все элементы множества должны отличаться друг от друга. Если в множество не входит ни один элемент, его принято называть пустым.

Элементы одного множества могут быть частью другого. Множества, состоящие из одинаковых элементов, принято считать равными.

Операции, производимые над множествами

Разобрав, что называют множеством, можно переходить к описанию действий над ними.

  • Объединение. Сумма заданных множеств обозначается как Х= N+M+P. Объединение должно вмещать в себя совокупность всех элементов минимум одного из слагаемых.
  • Пересечение. Общая часть нескольких множеств называется пересечением и обозначается как Y. При пустом пересечении множеств считается, что они не пересекаются.
  • Разность. Разностью называется совокупность элементов одного множества, не принадлежащих другому.

Множество чисел

Множество, состоящее из чисел, называется числовым.

В соответствии с видами входящих элементов множества могут обозначаться:

  • Z - состоящие из целых чисел (диапазон бесконечности положительных и отрицательных чисел);
  • Q - состоящие из рациональных чисел (т.е. представленных дробью);
  • N - состоящие из натуральных чисел (натуральные числа - это те, которые мы используем при счете. Они возникают естественным образом);
  • R - состоящие из действительных чисел (положительные, отрицательные числа и ноль называют действительными. Они бывают рациональными и иррациональными. Иррациональные числа можно выразить только в формате десятичной дроби (9,999999999).

Разобрав, что такое множество чисел, вам проще будет дальше постигать математику. Это интересная наука развивает логическое мышление, требует терпения, филигранной точности и времени, но дарит огромную радость от решения сложных задач.