Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Как показать что векторы линейно зависимы. Что значит "линейная зависимость"

Перейдем к описанию свойств линейных пространств. В первую очередь к ним относятся отношения между его элементами.

Линейной комбинацией элементов над полем действительных чиселR называется элемент

Определение. Множество элементов ,называется линейно независимым, если из равенства

с необходимостью следует, что ,. Ясно, что любая часть элементов изтакже линейно независимая. Если хотя бы одно из,, то множествоназывается линейно зависимым.

Пример III .6. Пусть дано векторное множество . Если один из векторов, например,, то такая система векторов линейно зависима. В самом деле, пусть множество,, …,,, …,линейно независимо, тогда из равенстваследует, что.

Добавляя к этому множеству вектор, умноженный на, по-прежнему имеем равенство

Следовательно, множество векторов, как, впрочем, и любых других элементов, содержащих нулевой элемент, всегда линейно зависимо ▼.

Замечание. Если множество векторов пусто, то оно линейно независимо. В самом деле, если нет никаких индексов, то невозможно выбрать им соответствующие не равные нулю числа, чтобы сумма вида (III.2) была равна 0. Такая интерпретация линейной независимости может быть принята за доказательство, тем более что такой результат хорошо согласуется с теорией 11.

В связи со сказанным определение линейной независимости можно сформулировать так: множество элементов линейно независимо, еслии нет ни одного индекса, для которого. В частности, это множество может быть и пустым.

Пример III .7. Любые два скользящих вектора линейно зависимы. Напомним, что скользящими векторами называются векторы, лежащие на одной прямой. Взяв единичный вектор , можно получить любой другой вектор умножением на соответствующее действительное число, то естьили. Следовательно, уже любые два вектора в одномерном пространстве линейно зависимы.

Пример III .8. Рассмотрим пространство полиномов, где ,,,. Запишем

Полагая ,,, получим, тождественно поt

то есть множество линейно зависимо. Заметим, что любое конечное множество вида,линейно независимо. Для доказательства рассмотрим случай, тогда из равенства

в случае предположения о его линейной зависимости, следовало бы, что существуют не все равные нулю числа 1 , 2 , 3 , что тождественно для любого выполняется (III.3), но это противоречит основной теореме алгебры: любой многочлен n -ой степени имеет не более чем n действительных корней. В нашем случае это уравнение имеет только два корня, а не бесконечное их множество. Получили противоречие.

§ 2. Линейные комбинации. Базисы

Пусть . Будем говорить, чтоестьлинейная комбинация элементов .

Теорема III .1 (основная). Множество ненулевых элементов линейно зависимо тогда и только тогда, когда некоторый элемент,является линейной комбинацией предшествующих элементов.

Доказательство . Необходимость . Предположим, что элементы ,, …,линейно зависимы и пустьпервое натуральное число, для которого элементы,, …,линейно зависимы, тогда

при не всех равных нулю и обязательно(иначе этим коэффициентом было бы, что противоречило бы заявленному). Отсюда имеем линейную комбинацию

Достаточность очевидна, поскольку, каждое множество, содержащее линейно зависимое множество, само линейно зависимо ▼.

Определение. Базисом (координатной системой) линейного пространства L называется множество A линейно независимых элементов, такое, что каждый элемент из L является линейной комбинацией элементов из A , 11.

Мы будем рассматривать конечномерные линейные пространства ,.

Пример III .9. Рассмотрим трехмерное векторное пространство . Возьмем единичные векторы,,. Они образуют базис при.

Покажем, что векторы линейно независимы. В самом деле, имеем

или . Отсюда по правилам умножения вектора на число и сложения векторов (примерIII.2) получим

Следовательно, ,,▼.

Пусть – произвольный вектор пространства, тогда исходя из аксиом линейного пространства получаем

Аналогичные рассуждения справедливы для пространства с базисом, . Из основной теоремы следует, что в произвольном конечномерном линейном пространствеL любой элемент может быть представлен как линейная комбинация его базисных элементов,, …,, то есть

Причем такое разложение единственно. В самом деле, пусть имеем

тогда после вычитания получаем

Отсюда, в силу независимости элементов ,,

То есть ▼.

Теорема III .2 (о дополнении до базиса). Пусть – конечномерное линейное пространство и– некоторое множество линейно независимых элементов. Если они не образуют базис, то вможно найти такие элементы,, …,, что множество элементовобразуют базис в. То есть, каждое линейно независимое множество элементов линейного пространства может быть дополнено до базиса.

Доказательство . Поскольку пространство – конечномерное, то у него есть базис, состоящий, например, изn элементов, пусть это элементы . Рассмотрим множество элементов.

Применим основную теорему. В порядке следования элементов рассмотрим множество A . Оно заведомо линейно зависимое, поскольку любой из элементов есть линейная комбинация,,. Так как элементы,, …,– линейно независимые, то добавляя к нему последовательно элементыдо тех пор, пока не появится первый элемент, например,, такой, что он будет линейной комбинацией предыдущих векторов этого множества, то есть. Выбрасывая этот элемент из множестваA , получим . Продолжаем эту процедуру до тех пор, пока в этом множестве не останетсяn линейно независимых элементов, среди которых все элементы ,, …,иn -m из элементов . Полученное множество и будет базисом ▼.

Пример III .10. Доказать, что векторы ,,иобразуют линейно зависимое множество, а любые три из них линейно независимы.

Покажем, что существуют не все равные нулю числа , для которых

В самом деле, при ,имеем

Линейная зависимость доказана. Покажем, что тройка векторов, например ,,, образует базис. Составим равенство

Выполняя действия с векторами, получим

Приравнивая соответствующие координаты в правой и левой частях последнего равенства, получим систему уравнений ,,, решая ее, получим.

Аналогичное рассуждение справедливо и для оставшихся троек векторов ,,или,,.

Теорема III .3 (о размерности пространства). Все базисы конечномерного линейного пространства L состоят из одинакового числа базисных элементов.

Доказательство . Пусть даны два множества , где;,. Каждому из них припишем одно из двух свойств, определяющих базис: 1) через элементы множестваA линейно выражаются любые элементы из L , 2) элементы множества B представляют линейно независимую совокупность, но не обязательно всю из L . Будем считать, что элементы A и B упорядочены.

Рассмотрим множество A и применим к его элементам m раз метод из основной теоремы. Так как элементы из B линейно независимы, то получим, по-прежнему, линейно зависимое множество

В самом деле, если бы , то получилось бы линейно независимое множество, а оставшиесяn элементов множества B линейно выражались бы через них, что невозможно, значит . Но этого тоже быть не может, так как по построению множество (III.4) обладает свойством базиса множества A . Поскольку пространство L конечномерное, то остается только , то есть два разных базиса пространстваL состоят из одинакового числа элементов ▼.

Следствие. В любом n -мерном линейном пространстве () можно найти бесконечно много базисов.

Доказательство следует из правила умножения элементов линейного (векторного) пространства на число.

Определение. Размерностью линейного пространства L называется число элементов, составляющих его базис.

Из определения следует, что пустое множество элементов – тривиальное линейное пространство – имеет размерность 0, что, как следует заметить, оправдывает терминологию линейной зависимости и позволяет заявить: n -мерное пространство имеет размерностьn , .

Таким образом, подводя итоги сказанному, получаем, что каждое множество из n +1 элемента n -мерного линейного пространства линейно зависимо; множество из n элементов линейного пространства является базисом тогда и только тогда, когда оно линейно независимое (или каждый элемент пространства является линейной комбинацией элементов его базиса); в любом линейном пространстве число базисов бесконечно.

Пример III .11 (теорема Кронекера – Капелли).

Пусть имеем систему линейных алгебраических уравнений

где A – матрица коэффициентов системы,  расширенная матрица коэффициентов системы

Где , (III.6)

эта запись эквивалентна системе уравнений (III.5).

Теорема III .4 (Кронекера – Капелли). Система линейных алгебраических уравнений (III.5) совместна тогда и только тогда, когда ранг матрицы A равен рангу матрицы , то есть.

Доказательство . Необходимость . Пусть система (III.5) совместна, тогда у нее существует решение: ,,. Учитывая (III.6), , но в этом случаеесть линейная комбинация векторов,, …,. Следовательно, через множество векторов,,, …,можно выразить любой вектор из. Это означает, что.

Достаточность . Пусть . Выберем любой базис из,, …,, тогдалинейно выражается через базис (это могут быть как все векторы, так и их часть) и тем самым, через все векторы,. Это означает, что система уравнений совместна ▼.

Рассмотрим n -мерное линейное пространство L . Каждый вектор можно представить линейной комбинацией , где множество,состоит из базисных векторов. Перепишем линейную комбинацию в видеи установим взаимнооднозначное соответствие между элементами и их координатами

Это означает, что между n -мерным линейным векторным пространством векторов надn -мерным полем действительных чисел установлено взаимно-однозначное соответствие.

Определение. Два линейных пространства инад одним и тем же скалярным полемизоморфны , если между их элементами можно установить взаимнооднозначное соответствие f , так чтобы

то есть под изоморфизмом понимается взаимнооднозначное соответствие, сохраняющее все линейные отношения. Ясно, что изоморфные пространства имеют одинаковую размерность.

Из примера и определения изоморфизма следует, что с точки зрения изучения проблем линейности изоморфные пространства одинаковы, поэтому формально вместо n -мерного линейного пространства L над полем можно изучать только поле.

Важнейшим понятием в теории линейных пространств является линейная зависимость векторов. Прежде чем определить это понятие, рассмотрим несколько примеров.

Примеры. 1. Дана следующая система трех векторов из пространства Тк:

Легко заметить, что или

2. Возьмем теперь другую систему векторов из

Соотношение, аналогичное равенству (1), для этой системы векторов непосредственно усмотреть затруднительно. Однако нетрудно проверить, что

Коэффициенты 4, -7,5 соотношения (2) можно было бы найти следующим образом. Обозначим их через считая неизвестными, будем решать векторное уравнение:

Произведя указанные операции умножения и сложения и переходя к равенству компонент векторов в (2), получаем однородную систему линейных уравнений относительно

Одним из решений этой системы является:

3. Рассмотрим систему векторов:

Равенство

приводит к системе уравнений, имеющей единственное - нулевое - решение. (Проверьте!) Таким образом, из равенства (3) следует,

что Иначе говоря, равенство (3) выполняется только при

Системы векторов в примерах 1-2 являются линейно зависимыми, система примера 3 - линейно независимой.

Определение 3. Система векторов линейного пространства над полем называется линейно зависимой, если существуют не все равные нулю числа поля Я, такие, что

Если же для векторов равенство имеет место только при то система векторов называется линейно независимой.

Заметим, что свойство линейной зависимости и независимости является свойством системы векторов. Однако в литературе широко используют те же прилагательные в применении непосредственно к самим векторам и говорят, допуская вольность речи, «система линейно независимых векторов» и даже «векторы линейно независимы».

Если в системе имеется всего один вектор а, то при по свойству 6 (§ 2) из следует Значит, система, состоящая из одного ненулевого вектора, линейно независима. Напротив, любая система векторов содержащая нулевой вектор 0, линейно зависима. Например, если то

Если система двух векторов линейно зависима, то имеет место равенство при (или . Тогда

т. е. векторы пропорциональны. Верно и обратное, так как из следует Значит, система двух векторов линейно зависима тогда и только тогда, когда векторы пропорциональны.

Пропорциональные векторы из лежат на одной прямой; в связи с этим и в общем случае пропорциональные векторы иногда называют коллинеарными.

Отметим некоторые свойства линейной зависимости векторов.

Свойство 1. Система векторов, содержащая линейно зависимую подсистему, линейно зависима.

Пусть линейно зависима подсистема

Тогда существуют не все равные нулю числа такие, что

Добавив в левую часть этого равенства остальные векторы данной системы с нулевыми коэффициентами, получим требуемое.

Из свойства 1 следует, что всякая подсистема линейно независимой системы векторов линейно независима.

Свойство 2. Если система векторов

линейно независима, а система векторов

линейно зависима, то вектор линейно выражается через векторы системы (4).

Так как система векторов (5) линейно зависима, то существуют не все равные нулю числа такие, что

Если то и тогда ненулевые коэффициенты будут среди что означало бы линейную зависимость системы (4). Значит, и

Свойство 3. Упорядоченная система ненулевых векторов

линейно зависима тогда и только тогда, когда некоторый вектор является линейной комбинацией предшествующих векторов.

Пусть система линейно зависима. Так как то вектор линейно независим. Обозначим через наименьшее натуральное число, при котором система линейно зависима. (Такое существует: в крайнем случае, если системы линейно независимы, то Тогда существуют не все равные нулю числа такие, что выполняется равенство

Если бы то ненулевые коэффициенты были бы среди и выполнялось бы равенство

что означало бы линейную зависимость системы но это противоречило бы выбору числа Значит, и потому

Обратно, из равенства (7) по свойству 1 следует линейная зависимость системы

Из свойства 3 легко следует, что система векторов тогда и только тогда линейно зависима, когда хотя бы один ее вектор линейно выражается через остальные. В этом смысле и говорят, что понятие линейной зависимости эквивалентно понятию линейной выражаемости.

Свойство 4. Если вектор х линейно выражается через векторы системы

а вектор линейно выражается через остальные векторы системы (8), то вектор также линейно выражается через эти векторы системы (8).

В самом деле,

Теперь можно доказать одну из важнейших теорем о линейной зависимости векторов.

Теорема 1. Если каждый вектор линейно независимой системы

есть линейная комбинация векторов

то Другими словами, в линейно независимой системе векторов, являющихся линейными комбинациями векторов число векторов не может быть больше

Доказательство. 1-й шаг. Построим систему

По условию каждый вектор системы (9), в частности вектор линейно выражается через векторы (10), а потому система (11) линейно зависима. По свойству 3 в системе (11) некоторый вектор где линейно выражается через предшествующие векторы, а потому и через векторы системы

полученной из (11) удалением вектора Отсюда по свойству 4 имеем: каждый вектор системы (9) линейно выражается через векторы системы (12).

2-й шаг. Применяя те же рассуждения, что и на шаге, к системам векторов

и (12) и учитывая, что система векторов линейно независима, мы получим систему векторов

через которые линейно выражаются все векторы системы (9).

Если допустить, что то, продолжая этот процесс, мы через шагов исчерпаем все векторы и получим систему

такую, что каждый вектор системы (9), в частности линейно выражается через векторы системы (14). Тогда система (9) оказывается линейно зависимой, что противоречит условию. Остается принять, что

Рассмотрим теперь, что означает линейная зависимость векторов в различных пространствах.

1. Пространство Если система двух векторов линейно зависима, то или т. е. векторы коллинеарны. Верно и обратное. Система трех векторов пространства линейно зависима тогда и только тогда, когда они лежат в одной плоскости. (Докажите!) Система четырех векторов пространства всегда линейно зависима. В самом деле, если какая-либо подсистема нашей системы линейно зависима, то и вся система линейно зависима. Если же никакая собственная подсистема не является линейно зависимой, то по предыдущему это означает, что никакие три вектора нашей системы не лежат на одной плоскости. Тогда из геометрических соображений следует существование вещественных чисел таких, что параллелепипед с ребрами-векторами будет иметь диагональ т. е. в равенстве

Пусть - поле скаляров и F - его основное множество. Пусть - -мерное арифметическое пространство над - произвольная система векторов пространства

ОПРЕДЕЛЕНИЕ. Линейной комбинацией системы векторов называется сумма вида где . Скаляры называются коэффициентами линейной комбинации. Линейная комбинация называется нетривиальной, если хотя бы один ее коэффициент отличен от нуля. Линейная комбинация называется тривиальной, если все ее коэффициенты равны нулю.

ОПРЕДЕЛЕНИЕ. Множество всех линейных комбинаций векторов системы называется линейной оболочкой этой системы и обозначается через . Линейной оболочкой пустой системы считается множество, состоящее из нулевого вектора.

Итак, по определению,

Легко видеть, что линейная оболочка данной системы векторов замкнута относительно операций сложения векторов, вычитания векторов и умножений векторов на скаляры.

ОПРЕДЕЛЕНИЕ. Система векторов называется линейно независимой, если для любых скаляров из равенства следуют равенства . Пустая система векторов

считается линейно независимой.

Другими словами, конечная система векторов линейно независима в том и только в том случае, когда всякая нетривиальная линейная комбинация векторов системы не равна нулевому вектору.

ОПРЕДЕЛЕНИЕ. Система векторов называется линейно зависимой, если существуют скаляры не все равные нулю, такие, что

Другими словами, конечная система векторов называется линейно зависимой, если существует нетривиальная линейная комбинация векторов системы, равная нулевому вектору.

Система векторов

называется системой единичных векторов векторного пространства Эта система векторов линейно независима. В самом деле, для любых скаляров из равенства следует равенство и, значит, равенства

Рассмотрим свойства линейной зависимости и независимости системы векторов.

СВОЙСТВО 1.1. Система векторов, содержащая нуле вой вектор, линейно зависима.

Доказательство. Если в системе векторов один из векторов, например вектор нулевой, то линейная комбинация векторов системы, все коэффициенты которой нулевые, за исключением коэффициента при равна нулевому вектору. Следовательно, такая система векторов линейно зависима.

СВОЙСТВО 1.2. Система векторов линейно зависима, если какая-нибудь ее подсистема линейно зависима.

Доказательство. Пусть - линейно зависимая подсистема системы причем хотя бы один из коэффициентов отличен от нуля. Тогда Следовательно, система векторов линейно зависима.

СЛЕДСТВИЕ. Любая подсистема линейно независимой системы линейно независима.

СВОЙСТВО 1.3. Система векторов

в которой линейно зависима тогда и только тогда, когда хотя бы один из векторов является линейной комбинацией предшествующих векторов.

Доказательство. Пусть система (1) линейно зависима и Тогда существуют скаляры не все равные нулю, такие, что

Обозначим через k наибольшее из чисел удовлетворяющее условию Тогда равенство (2) можно записать в виде

Отметим, что ибо в противном случае следовательно, поскольку . Из (3) следует равенство

Предположим теперь, что вектор есть линейная комбинация предшествующих ему векторов, т. е. Тогда , т. е. подсистема системы (1) линейно зависима. Следовательно, по свойству 1.2, линейно зависима и исходная система (1).

СВОЙСТВО 1.4. Если система векторов линейно независима, а система векторов

линейно зависима, то вектор v линейно выражается через векторы

и притом единственным образом.

Доказательство. По условию система (2) линейно зависима, т. е. существуют скаляры не все равные нулю, такие, что

При этом так как при что противоречит линейной независимости системы (1). Из (3) следует равенство

В силу линейной независимости системы (1) отсюда следует, что

СВОЙСТВО 1.5. Если и

Доказательство. Условие означает что найдутся такие скаляры что

Условие означает, что существуют такие скаляры что

В силу (1) и (2) получаем

ТЕОРЕМА 1.2. Если

то система векторов линейно зависима. Доказательство (проводится индукцией по ).

Линейная зависимость и линейная независимость векторов.
Базис векторов. Аффинная система координат

В аудитории находится тележка с шоколадками, и каждому посетителю сегодня достанется сладкая парочка – аналитическая геометрия с линейной алгеброй. В данной статье будут затронуты сразу два раздела высшей математики, и мы посмотрим, как они уживаются в одной обёртке. Сделай паузу, скушай «Твикс»! …блин, ну и чушь спорол. Хотя ладно, забивать не буду, в конце концов, на учёбу должен быть позитивный настрой.

Линейная зависимость векторов , линейная независимость векторов , базис векторов и др. термины имеют не только геометрическую интерпретацию, но, прежде всего, алгебраический смысл . Само понятие «вектор» с точки зрения линейной алгебры – это далеко не всегда тот «обычный» вектор, который мы можем изобразить на плоскости или в пространстве. За доказательством далеко ходить не нужно, попробуйте нарисовать вектор пятимерного пространства . Или вектор погоды, за которым я только что сходил на Гисметео: – температура и атмосферное давление соответственно. Пример, конечно, некорректен с точки зрения свойств векторного пространства, но, тем не менее, никто не запрещает формализовать данные параметры вектором. Дыхание осени….

Нет, я не собираюсь грузить вас теорией, линейными векторными пространствами, задача состоит в том, чтобы понять определения и теоремы. Новые термины (линейная зависимость, независимость, линейная комбинация, базис и т.д.) приложимы ко всем векторам с алгебраической точки зрения , но примеры будут даны геометрические. Таким образом, всё просто, доступно и наглядно. Помимо задач аналитической геометрии мы рассмотрим и некоторые типовые задания алгебры . Для освоения материала желательно ознакомиться с уроками Векторы для чайников и Как вычислить определитель?

Линейная зависимость и независимость векторов плоскости.
Базис плоскости и аффинная система координат

Рассмотрим плоскость вашего компьютерного стола (просто стола, тумбочки, пола, потолка, кому что нравится). Задача будет состоять в следующих действиях:

1) Выбрать базис плоскости . Грубо говоря, у столешницы есть длина и ширина, поэтому интуитивно понятно, что для построения базиса потребуется два вектора. Одного вектора явно мало, три вектора – лишка.

2) На основе выбранного базиса задать систему координат (координатную сетку), чтобы присвоить координаты всем находящимся на столе предметам.

Не удивляйтесь, сначала объяснения будут на пальцах. Причём, на ваших. Пожалуйста, поместите указательный палец левой руки на край столешницы так, чтобы он смотрел в монитор. Это будет вектор . Теперь поместите мизинец правой руки на край стола точно так же – чтобы он был направлен на экран монитора. Это будет вектор . Улыбнитесь, вы замечательно выглядите! Что можно сказать о векторах ? Данные векторы коллинеарны , а значит, линейно выражаются друг через друга:
, ну, или наоборот: , где – некоторое число, отличное от нуля.

Картинку сего действа можно посмотреть на уроке Векторы для чайников , где я объяснял правило умножения вектора на число.

Будут ли ваши пальчики задавать базис на плоскости компьютерного стола? Очевидно, что нет. Коллинеарные векторы путешествуют туда-сюда по одному направлению, а у плоскости есть длина и ширина.

Такие векторы называют линейно зависимыми .

Справка: Слова «линейный», «линейно» обозначают тот факт, что в математических уравнениях, выражениях нет квадратов, кубов, других степеней, логарифмов, синусов и т.д. Есть только линейные (1-й степени) выражения и зависимости.

Два вектора плоскости линейно зависимы тогда и только тогда , когда они коллинеарны .

Скрестите пальцы на столе, чтобы между ними был любой угол, кроме 0 или 180 градусов. Два вектора плоскости линейно не зависимы в том и только том случае, если они не коллинеарны . Итак, базис получен. Не нужно смущаться, что базис получился «косым» с неперпендикулярными векторами различной длины. Очень скоро мы увидим, что для его построения пригоден не только угол в 90 градусов, и не только единичные, равные по длине векторы

Любой вектор плоскости единственным образом раскладывается по базису :
, где – действительные числа . Числа называют координатами вектора в данном базисе.

Также говорят, что вектор представлен в виде линейной комбинации базисных векторов . То есть, выражение называют разложением вектора по базису или линейной комбинацией базисных векторов.

Например, можно сказать, что вектор разложен по ортонормированному базису плоскости , а можно сказать, что он представлен в виде линейной комбинации векторов .

Сформулируем определение базиса формально: Базисом плоскости называется пара линейно независимых (неколлинеарных) векторов , , при этом любой вектор плоскости является линейной комбинацией базисных векторов.

Существенным моментом определения является тот факт, что векторы взяты в определённом порядке . Базисы – это два совершенно разных базиса! Как говорится, мизинец левой руки не переставишь на место мизинца правой руки.

С базисом разобрались, но его недостаточно, чтобы задать координатную сетку и присвоить координаты каждому предмету вашего компьютерного стола. Почему недостаточно? Векторы являются свободными и блуждают по всей плоскости. Так как же присвоить координаты тем маленьким грязным точкам стола, которые остались после бурных выходных? Необходим отправной ориентир. И таким ориентиром является знакомая всем точка – начало координат. Разбираемся с системой координат:

Начну со «школьной» системы. Уже на вступительном уроке Векторы для чайников я выделял некоторые различия между прямоугольной системой координат и ортонормированным базисом . Вот стандартная картина:

Когда говорят о прямоугольной системе координат , то чаще всего имеют в виду начало координат, координатные оси и масштаб по осям. Попробуйте набрать в поисковике «прямоугольная система координат», и вы увидите, что многие источники вам будут рассказывать про знакомые с 5-6-го класса координатные оси и о том, как откладывать точки на плоскости.

С другой стороны, создается впечатление, что прямоугольную систему координат вполне можно определить через ортонормированный базис . И это почти так. Формулировка звучит следующим образом:

началом координат , и ортонормированный базис задают декартову прямоугольную систему координат плоскости . То есть, прямоугольная система координат однозначно определяется единственной точкой и двумя единичными ортогональными векторами . Именно поэтому, вы видите чертёж, который я привёл выше – в геометрических задачах часто (но далеко не всегда) рисуют и векторы, и координатные оси.

Думаю, всем понятно, что с помощью точки (начала координат) и ортонормированного базиса ЛЮБОЙ ТОЧКЕ плоскости и ЛЮБОМУ ВЕКТОРУ плоскости можно присвоить координаты. Образно говоря, «на плоскости всё можно пронумеровать».

Обязаны ли координатные векторы быть единичными? Нет, они могут иметь произвольную ненулевую длину. Рассмотрим точку и два ортогональных вектора произвольной ненулевой длины:

Такой базис называется ортогональным . Начало координат с векторами задают координатную сетку, и любая точка плоскости, любой вектор имеют свои координаты в данном базисе. Например, или . Очевидное неудобство состоит в том, что координатные векторы в общем случае имеют различные длины, отличные от единицы. Если длины равняются единице, то получается привычный ортонормированный базис.

! Примечание : в ортогональном базисе, а также ниже в аффинных базисах плоскости и пространства единицы по осям считаются УСЛОВНЫМИ . Например, в одной единице по оси абсцисс содержится 4 см, в одной единице по оси ординат 2 см. Данной информации достаточно, чтобы при необходимости перевести «нестандартные» координаты в «наши обычные сантиметры».

И второй вопрос, на который уже на самом деле дан ответ – обязательно ли угол между базисными векторами должен равняться 90 градусам? Нет! Как гласит определение, базисные векторы должны быть лишь неколлинеарными . Соответственно угол может быть любым, кроме 0 и 180 градусов.

Точка плоскости, которая называется началом координат , и неколлинеарные векторы , , задают аффинную систему координат плоскости :

Иногда такую систему координат называют косоугольной системой. В качестве примеров на чертеже изображены точки и векторы:

Как понимаете, аффинная система координат ещё менее удобна, в ней не работают формулы длин векторов и отрезков, которые мы рассматривали во второй части урока Векторы для чайников , многие вкусные формулы, связанные со скалярным произведением векторов . Зато справедливы правила сложения векторов и умножения вектора на число, формулы деления отрезка в данном отношении , а также ещё некоторые типы задач, которые мы скоро рассмотрим.

А вывод таков, что наиболее удобным частным случаем аффинной системы координат является декартова прямоугольная система. Поэтому её, родную, чаще всего и приходится лицезреть. …Впрочем, всё в этой жизни относительно – существует немало ситуаций, в которых уместна именно косоугольная (или какая-набудь другая, например, полярная ) система координат. Да и гуманоидам такие системы могут прийтись по вкусу =)

Переходим к практической части. Все задачи данного урока справедливы как для прямоугольной системы координат, так и для общего аффинного случая. Сложного здесь ничего нет, весь материал доступен даже школьнику.

Как определить коллинеарность векторов плоскости?

Типовая вещь. Для того чтобы два вектора плоскости были коллинеарны, необходимо и достаточно, чтобы их соответствующие координаты были пропорциональны .По существу, это покоординатная детализация очевидного соотношения .

Пример 1

а) Проверить, коллинеарны ли векторы .
б) Образуют ли базис векторы ?

Решение:
а) Выясним, существует ли для векторов коэффициент пропорциональности , такой, чтобы выполнялись равенства :

Обязательно расскажу о «пижонской» разновидности применения данного правила, которая вполне прокатывает на практике. Идея состоит в том, чтобы сразу составить пропорцию и посмотреть, будет ли она верной:

Составим пропорцию из отношений соответствующих координат векторов:

Сокращаем:
, таким образом, соответствующие координаты пропорциональны, следовательно,

Отношение можно было составить и наоборот, это равноценный вариант:

Для самопроверки можно использовать то обстоятельство, что коллинеарные векторы линейно выражаются друг через друга. В данном случае имеют место равенства . Их справедливость легко проверяется через элементарные действия с векторами:

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Исследуем на коллинеарность векторы . Составим систему:

Из первого уравнения следует, что , из второго уравнения следует, что , значит, система несовместна (решений нет). Таким образом, соответствующие координаты векторов не пропорциональны.

Вывод : векторы линейно независимы и образуют базис.

Упрощённая версия решения выглядит так:

Составим пропорцию из соответствующих координат векторов :
, значит, данные векторы линейно независимы и образуют базис.

Обычно такой вариант не бракуют рецензенты, но возникает проблема в тех случаях, когда некоторые координаты равны нулю. Вот так: . Или так: . Или так: . Как тут действовать через пропорцию? (действительно, на ноль же делить нельзя). Именно по этой причине я и назвал упрощенное решение «пижонским».

Ответ: а) , б) образуют.

Небольшой творческий пример для самостоятельного решения:

Пример 2

При каком значении параметра векторы будут коллинеарны?

В образце решения параметр найден через пропорцию .

Существует изящный алгебраический способ проверки векторов на коллинеарность., систематизируем наши знания и пятым пунктом как раз добавим его:

Для двух векторов плоскости эквивалентны следующие утверждения :

2) векторы образуют базис;
3) векторы не коллинеарны;

+ 5) определитель, составленный из координат данных векторов, отличен от нуля .

Соответственно, эквивалентны следующие противоположные утверждения :
1) векторы линейно зависимы;
2) векторы не образуют базиса;
3) векторы коллинеарны;
4) векторы можно линейно выразить друг через друга;
+ 5) определитель, составленный из координат данных векторов, равен нулю .

Я очень и очень надеюсь, что на данный момент вам уже понятны все встретившиеся термины и утверждения.

Рассмотрим более подробно новый, пятый пункт: два вектора плоскости коллинеарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю :. Для применения данного признака, естественно, нужно уметь находить определители .

Решим Пример 1 вторым способом:

а)
, значит, данные векторы коллинеарны.

б) Два вектора плоскости образуют базис, если они не коллинеарны (линейно независимы). Вычислим определитель, составленный из координат векторов :
, значит, векторы линейно независимы и образуют базис.

Ответ: а) , б) образуют.

Выглядит значительно компактнее и симпатичнее, чем решение с пропорциями.

С помощью рассмотренного материала можно устанавливать не только коллинеарность векторов, но и доказывать параллельность отрезков, прямых. Рассмотрим пару задач с конкретными геометрическими фигурами.

Пример 3

Даны вершины четырёхугольника . Доказать, что четырёхугольник является параллелограммом.

Доказательство : Чертежа в задаче строить не нужно, поскольку решение будет чисто аналитическим. Вспоминаем определение параллелограмма:
Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Таким образом, необходимо доказать:
1) параллельность противоположных сторон и ;
2) параллельность противоположных сторон и .

Доказываем:

1) Найдём векторы:

Вычислим определитель, составленный из координат векторов :

2) Найдём векторы:

Получился один и тот же вектор («по школьному» – равные векторы). Коллинеарность совсем очевидна, но решение таки лучше оформить с толком, с расстановкой. Вычислим определитель, составленный из координат векторов :
, значит, данные векторы коллинеарны, и .

Вывод : Противоположные стороны четырёхугольника попарно параллельны, значит, он является параллелограммом по определению. Что и требовалось доказать .

Больше фигур хороших и разных:

Пример 4

Даны вершины четырёхугольника . Доказать, что четырёхугольник является трапецией.

Для более строгой формулировки доказательства лучше, конечно, раздобыть определение трапеции, но достаточно и просто вспомнить, как она выглядит.

Это задание для самостоятельного решения. Полное решение в конце урока.

А теперь пора потихонечку перебираться из плоскости в пространство:

Как определить коллинеарность векторов пространства?

Правило очень похоже. Для того чтобы два вектора пространства были коллинеарны, необходимо и достаточно , чтобы их соответствующие координаты были пропорциональны .

Пример 5

Выяснить, будут ли коллинеарны следующие векторы пространства:

а) ;
б)
в)

Решение:
а) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:

Система не имеет решения, значит, векторы не коллинеарны.

«Упрощёнка» оформляется проверкой пропорции . В данном случае:
– соответствующие координаты не пропорциональны, значит, векторы не коллинеарны.

Ответ: векторы не коллинеарны.

б-в) Это пункты для самостоятельного решения. Попробуйте его оформить двумя способами.

Существует метод проверки пространственных векторов на коллинеарность и через определитель третьего порядка, данный способ освещен в статье Векторное произведение векторов .

Аналогично плоскому случаю, рассмотренный инструментарий может применяться в целях исследования параллельности пространственных отрезков и прямых.

Добро пожаловать во второй раздел:

Линейная зависимость и независимость векторов трехмерного пространства.
Пространственный базис и аффинная система координат

Многие закономерности, которые мы рассмотрели на плоскости, будут справедливыми и для пространства. Я постарался минимизировать конспект по теории, поскольку львиная доля информации уже разжёвана. Тем не менее, рекомендую внимательно прочитать вводную часть, так как появятся новые термины и понятия.

Теперь вместо плоскости компьютерного стола исследуем трёхмерное пространство. Сначала создадим его базис. Кто-то сейчас находится в помещении, кто-то на улице, но в любом случае нам никуда не деться от трёх измерений: ширины, длины и высоты. Поэтому для построения базиса потребуется три пространственных вектора. Одного-двух векторов мало, четвёртый – лишний.

И снова разминаемся на пальцах. Пожалуйста, поднимите руку вверх и растопырьте в разные стороны большой, указательный и средний палец . Это будут векторы , они смотрят в разные стороны, имеют разную длину и имеют разные углы между собой. Поздравляю, базис трёхмерного пространства готов! Кстати, не нужно демонстрировать такое преподавателям, как ни крути пальцами, а от определений никуда не деться =)

Далее зададимся важным вопросом, любые ли три вектора образуют базис трехмерного пространства ? Пожалуйста, плотно прижмите три пальца к столешнице компьютерного стола. Что произошло? Три вектора расположились в одной плоскости, и, грубо говоря, у нас пропало одно из измерений – высота. Такие векторы являются компланарными и, совершенно очевидно, что базиса трёхмерного пространства не создают.

Следует отметить, что компланарные векторы не обязаны лежать в одной плоскости, они могут находиться в параллельных плоскостях (только не делайте этого с пальцами, так отрывался только Сальвадор Дали =)).

Определение : векторы называются компланарными , если существует плоскость, которой они параллельны. Здесь логично добавить, что если такой плоскости не существует, то и векторы будут не компланарны.

Три компланарных вектора всегда линейно зависимы , то есть линейно выражаются друг через друга. Для простоты снова представим, что они лежат в одной плоскости. Во-первых, векторы мало того, что компланарны, могут быть вдобавок ещё и коллинеарны, тогда любой вектор можно выразить через любой вектор. Во втором случае, если, например, векторы не коллинеарны, то третий вектор выражается через них единственным образом: (а почему – легко догадаться по материалам предыдущего раздела).

Справедливо и обратное утверждение: три некомпланарных вектора всегда линейно независимы , то есть никоим образом не выражаются друг через друга. И, очевидно, только такие векторы могут образовать базис трёхмерного пространства.

Определение : Базисом трёхмерного пространства называется тройка линейно независимых (некомпланарных) векторов , взятых в определённом порядке , при этом любой вектор пространства единственным образом раскладывается по данному базису , где – координаты вектора в данном базисе

Напоминаю, также можно сказать, что вектор представлен в виде линейной комбинации базисных векторов.

Понятие системы координат вводится точно так же, как и для плоского случая, достаточно одной точки и любых трёх линейно независимых векторов:

началом координат , и некомпланарные векторы , взятые в определённом порядке , задают аффинную систему координат трёхмерного пространства :

Конечно, координатная сетка «косая» и малоудобная, но, тем не менее, построенная система координат позволяет нам однозначно определить координаты любого вектора и координаты любой точки пространства. Аналогично плоскости, в аффинной системе координат пространства не будут работать некоторые формулы, о которых я уже упоминал.

Наиболее привычным и удобным частным случаем аффинной системы координат, как все догадываются, является прямоугольная система координат пространства :

Точка пространства, которая называется началом координат , и ортонормированный базис задают декартову прямоугольную систему координат пространства . Знакомая картинка:

Перед тем, как перейти к практическим заданиям, вновь систематизируем информацию:

Для трёх векторов пространства эквивалентны следующие утверждения :
1) векторы линейно независимы;
2) векторы образуют базис;
3) векторы не компланарны;
4) векторы нельзя линейно выразить друг через друга;
5) определитель, составленный из координат данных векторов, отличен от нуля.

Противоположные высказывания, думаю, понятны.

Линейная зависимость / независимость векторов пространства традиционно проверяется с помощью определителя (пункт 5). Оставшиеся практические задания будут носить ярко выраженный алгебраический характер. Пора повесить на гвоздь геометрическую клюшку и орудовать бейсбольной битой линейной алгебры:

Три вектора пространства компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов, равен нулю :.

Обращаю внимание на небольшой технический нюанс: координаты векторов можно записывать не только в столбцы, но и в строки (значение определителя от этого не изменится – см. свойства определителей). Но гораздо лучше в столбцы, поскольку это выгоднее для решения некоторых практических задач.

Тем читателям, которые немножко позабыли методы расчета определителей, а может и вообще слабо в них ориентируются, рекомендую один из моих самых старых уроков: Как вычислить определитель?

Пример 6

Проверить, образуют ли базис трёхмерного пространства следующие векторы:

Решение : Фактически всё решение сводится к вычислению определителя.

а) Вычислим определитель, составленный из координат векторов (определитель раскрыт по первой строке):

, значит, векторы линейно независимы (не компланарны) и образуют базис трёхмерного пространства.

Ответ : данные векторы образуют базис

б) Это пункт для самостоятельного решения. Полное решение и ответ в конце урока.

Встречаются и творческие задачи:

Пример 7

При каком значении параметра векторы будут компланарны?

Решение : Векторы компланарны тогда и только тогда, когда определитель, составленный из координат данных векторов равен нулю:

По существу, требуется решить уравнение с определителем. Налетаем на нули как коршуны на тушканчиков – определитель выгоднее всего раскрыть по второй строке и сразу же избавиться от минусов:

Проводим дальнейшие упрощения и сводим дело к простейшему линейному уравнению:

Ответ : при

Здесь легко выполнить проверку, для этого нужно подставить полученное значение в исходный определитель и убедиться, что , раскрыв его заново.

В заключение рассмотрим ещё одну типовую задачу, которая носит больше алгебраический характер и традиционно включается в курс линейной алгебры. Она настолько распространена, что заслуживает отдельного топика:

Доказать, что 3 вектора образуют базис трёхмерного пространства
и найти координаты 4-го вектора в данном базисе

Пример 8

Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе.

Решение : Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора вполне могут образовывать новый базис . И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы линейно независимы:

Вычислим определитель, составленный из координат векторов :

, значит, векторы линейно независимы и образуют базис трехмерного пространства.

! Важно : координаты векторов обязательно записываем в столбцы определителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения. – координаты вектора метод Крамера здесь – совсем не айс;-)

И, как я уже отмечал, задание носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, произвольные векторы курса линейной алгебры . Для случая двумерных векторов можно сформулировать и решить аналогичную задачу – решение будет технически намного проще, и поэтому я прошёл мимо него в предыдущем параграфе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Пример 9

Даны векторы . Показать, что векторы образуют базис и найти координаты вектора в этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства , где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра.…Хотя, кто его знает, может быть и не чистая…, однако закругляемся – о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных , которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

линейная зависимость

соотношение вида С1u1+С2u2+... +Сnun?0, где С1, С2,..., Сn - числа, из которых хотя бы одно? 0, а u1, u2,..., un - какие-либо математические объекты, напр. векторы или функции.

Линейная зависимость

(матем.), соотношение вида

C11u1 + C2u2 + ... + Cnun = 0, (*)

где С1, C2, ..., Cn ≈ числа, из которых хотя бы одно отлично от нуля, а u1, u2, ..., un ≈ те или иные матем. объекты, для которых определены операции сложения и умножения на число. В соотношение (*) объекты u1, u2, ..., un входят в 1-й степени, т. е. линейно; поэтому описываемая этим соотношением зависимость между ними называется линейной. Знак равенства в формуле (*) может иметь различный смысл и в каждом конкретном случае должен быть разъяснён. Понятие Л. з. употребляется во многих разделах математики. Так, можно говорить о Л. з. между векторами, между функциями от одного или нескольких переменных, между элементами линейного пространства и т. д. Если между объектами u1, u2, ..., un имеется Л. з., то говорят, что эти объекты линейно зависимы; в противном случае их называется линейно независимыми. Если объекты u1, u2, ..., un линейно зависимы, то хотя бы один из них является линейной комбинацией остальных, т. е.

u1 = a 1u1 + ... + a i-1ui-1 + a i+1ui+1 + ... + a nun.

Непрерывные функции от одного переменного

u1 = j 1(х), u2 = j 2(х), ..., un = j n(x) называются линейно зависимыми, если между ними имеется соотношение вида (*), в котором знак равенства понимается как тождество относительно х. Для того чтобы функции j 1(x), j 2(x), ..., j n(x), заданные на некотором отрезке а £ х £ b, были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль их определитель Грама

i, k = 1,2, ..., n.

Если же функции j1 (x), j2(x), ..., jn(x) являются решениями линейного дифференциального уравнения, то для существования Л. з. между ними необходимо и достаточно, чтобы вронскиан обращался в нуль хотя бы в одной точке.

══ Линейные формы от m переменных

u1 = ai1x1 + ai2x2 + ... + aimxm

(i = 1, 2, ..., n)

называются линейно зависимыми, если существует соотношение вида (*), в котором знак равенства понимается как тождество относительно всех переменных x1, x2, ..., xm. Для того чтобы n линейных форм от n переменных были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль определитель