Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Основы генетики популяций. Значение популяционная генетика: основные понятия популяционной генетики в словаре кольера

Каждый живой организм, в том числе и человеческий, обладает целым набором присущих ему свойств. Некоторые ИЗ них являются общими для всех представителей данного вида ици)оспецифические особенности). Например, каждый представитель вида Homo sapiens отличается от представителей других видов способностью к прямохождению, отсутствием полосяного покрова на большей части тела, высокоразвитым интеллектом и способностью к речевой коммуникации. Это все нпдоспецифические особенности. Каждый индивид, помимо нпдоспецифических характеристик, обладает целым набором индивидуальных, присущих только ему, качеств - это индивидуально-специфические особенности. Все эти особенности, присущие данному индивиду - и видоспецифические, и индивидуальные - в генетике принято называть признаками. Виды, населяющие Землю, образуют сообщества, то есть пространственно-временные объединения. Причиной образования сообществ является одинаковая приспособленность особей к определенным экологическим условиям. Например, в пустынях не встречаются животные, биология которых требует высокой влажности климата. Одной из разновидностей сообществ является популяция. Поскольку генетика поведения работает в основном на уровне популяций, рассмотрим, как определяется это понятие в генетике.

Популяция - совокупность свободно скрещивающихся особей одного вида, длительно существующей на определенной территории (части ареала), и относительно обособленной от других совокупностей того же вида. Важнейший признак популяции - это относительно свободное скрещивание. Если возникают какие-то изоляционные барьеры, препятствующие свободному скрещиванию, то возникают новые популяции.

Идеальной популяцией в генетике считается группа скрещивающихся особей, живущих на одной территории. Если вероятности скрещиваний между особями не зависят от каких-либо дополнительных обстоятельств (возраста особей, половых предпочтений и т.п.), то мы имеем дело со случайно скрещивающейся популяцией. Иными словами, в такой популяции любая особь (или индивид) одного пола имеет равные шансы скрещивания (заключения брака) с любой особью (индивидом) другого пола. Случайно скрещивающуюся популяцию иногда называют панмиксной (термин «панмиксия» означает свободное случайное скрещивание; идеальная панмиксия возможна лишь в очень больших популяциях, не подвергающихся давлению отбора, мутаций и других факторов). Многие теоретические модели в психогенетике (и вообще в популяционной генетике) основаны на предположении о наличии в популяции свободного случайного скрещивания.

Принцип свободного и случайного скрещивания в популяциях может нарушаться , если образование пар по какому-либо признаку происходит не случайно. Например, в человеческих популяциях имеется тенденция к неслучайному подбору супружеских пар по росту. В генетике такой неслучайный подбор пар носит название «ассортативностъ». Например, в отношении роста говорят, что в популяции существует ассортативность по росту. Наличие или отсутствие ассорта-тивности можно проверить, оценивая сходство супругов: если корреляция по данному признаку близка к нулю, то говорят, что ассортативность отсутствует; если корреляция отличается от нуля, это означает наличие ассортативности.

Ассортативность браков, т.е. наличие определенных предпочтений при выборе супругов может сказываться на фенотипической изменчивости. Она приводит к отклонению от законов менделевских популяций (одно из требований, которым должна удовлетворять такая популяция, - свободное скрещивание в пределах популяции). Чаще всего наблюдается положительная ассортативность, когда при вступлении в брак наблюдается положительная корреляция по какому-либо признаку между супругами.

Отмечается положительная ассортативность браков по коэффициенту интеллекта. Сильнее всего она выражена для крайних значений признака-лица с высоким коэффициентом интеллекта предпочитают вступать в брак с лицами с высоким коэффициентом (коэффициент корреляции 0,3-0,4). При низком значении коэффициента интеллекта тоже выбирают себе подобных. В последнем случае коэффициент корреляции особенно высок (0,68). При положительной ассортативности в популяции происходит увеличение генетической дисперсии, так как увеличивается разнообразие генотипов.

Существует положительная ассортативность по таким признакам, как рост, музыкальные способности, социально-экономическое положение, склонность к нейротизму. Отмечена ассортативность браков даже по некоторым параметрам ЭЭГ: очевидно, характеристики ЭЭГ влияют на какие-то особенности поведения, значимые для выбора партнера. В некоторых случаях встречается отрицательная ассортативность: например, рыжеволосые редко вступают в брак друг с другом. По ряду параметров личности ассортативность не обнаружена, например, по темпераменту.

Популяции не являются статичными образованиями. В них постоянно происходят процессы миграции, имеются колебания рождаемости и смертности и другие изменения. Эти процессы приводят к колебаниям численности популяции и изменению частот встречаемости различных признаков.

Поскольку человек относится к одному из видов живых организмов, для: него также характерно образование популяций. Помимо биологических причин, на формирование человеческих популяций влияют и различные социальные факторы. Человеческие популяции могут иметь различную численность. Термин «популяция» можно применить к населению таких мегаполисов, как Москва или Токио (в которых ежедневно происходят процессы миграции, приводящие к обновлению и изменению численности за счет притока или оттока населения), и к небольшим сообществам или племенам, населяющим замкнутые территории, например, в горной местности. Замкнутые популяции носят название изолятов. Изоляты в человеческих популяциях могут встречаться не только в географически изолированных местностях, но и внутри крупных популяций.

У человека, например, помимо территориальной изоляции, достаточно изолированные популяции могут возникать на основе социальных, этнических или религиозных барьеров. Поскольку между популяциями не происходит свободный обмен генами, то они могут существенно различаться по генетическим характеристикам. Для того чтобы описывать генетические свойства популяции, вводится понятие генофонда совокупности генов, встречающихся в данной популяции. Помимо генофонда важна также частота встречаемости гена, или частота встречаемости аллеля.

Среди представителей любой популяции наблюдается определенная изменчивость, то есть разнообразие признаков у ее членов. Изменчивость человеческой популяции легко заметить, если посмотреть на толпу людей. Наряду с видоспецифическими признаками каждый индивид обладает уникальным набором признаков, присущих только ему. В результате в толпе людей практически невозможно обнаружить двух одинаковых индивидов. Индивиды различаются не только по внешнему строению - по цвету волос и глаз, росту и телосложению, но и по особенностям поведения - манере говорить, походке, жестикуляции и т.п.

В зависимости от типа изменчивости в популяциях мож-(ЫДелить признаки двоякого рода. Одни из них характеризуются дискретным, то есть прерывистым рядом изменчивостей. Эти признаки встречаются в ограниченном числе вариантов, различия между индивидами четко выражены, и промежуточны формы отсутствуют. Признаки такого рода относят категории качественных. Внешние условия относительно мало или почти совсем не влияют на их проявление. К таким признакам относятся, например, группы крови у человека. Носители разных вариантов качественных признаков в популяции могут встречаться с разной частотой: можно вспомнить, что люди с резус-отрицательным: фактором крови встречаются гораздо реже, чем с резус-положительным. Кроме того, частота встречаемости вариантов одного и того же признака в разных популяциях обычно различается.

Часто качественные полиморфизмы, которым сопутствуют определенные особенности поведения, связаны с различными наследственными аномалиями, приводящими к дегеративным изменениям в центральной нервной системе, сопровождающимся нарушениями поведения. Примерами таких полиморфизмов, затрагивающих поведение, являются фашлкетонурия - нарушение метаболизма, приводящее к тяжелой умственной отсталости, и хорея Гентингтона - дегенеративное заболевание нервных клеток, приводящее к непро-ичжщьным движениям, изменениям личности и постепенно нарастающему слабоумию. Основная масса поведенческих характеристик человека относится ко второй категории признаков, обладающих непрерывной, или количественной, изменчивостью - континуальностью проявлений.

Подобную изменчивость мы наблюдаем в таких морфологических признаках, как рост, вес, цвет волос и кожи, и в таких поведенческих признаках, как интеллект, черты темперамента и т.д. Все значения каждого из этих признаков можно разместить на некоторой непрерывной шкале. Очень высокие и очень низкие значения признака, как правило, встречаются в популяциях реже, чем средние. Частота встречаемости тех или иных значений признака может быть подсчитана и представлена в виде распределения, которое является совокупностью значений количественного признака и соответствующих им частот. Частотное распределение по признаку, проявляющему непрерывную изменчивость, примерно соответствует кривой нормального распределения.

Большинство людей попадает в среднюю часть распределения, а на его краях, представляющих крайние степени выраженности признака, оказывается лишь малая часть популяции.

Часто при оценке количественных признаков мы пользуемся качественными категориями, такими, как «высокий-низкий», «сильный-слабый», «темный-светлый» и т.п. Вспомним известный пример из психофизиологии. Людей часто делят на имеющих сильный и слабый тип нервной системы, однако такое деление условно. В эти группы попадают только люди с краев распределения, тогда как сам параметр силы-слабости измеряется по непрерывной шкале, и в популяции встречаются все значения, начиная от крайней слабости нервной системы и заканчивая крайними значениями силы. Точно так же весьма условно деление людей на экстравертов и интровертов. Любое типологическое деление не описывает полной картины изменчивости по континуальному признаку.

Существует еще одна категория признаков, занимающая как бы промежуточное положение между качественными полиморфизмами и количественными, континуальными признаками. Речь идет о признаках с пороговым эффектом. Внешне эти признаки напоминают качественные полиморфизмы, то есть отличаются дискретным характером проявления. Организм либо несет данный признак, либо нет. Чаще всего признаками с порой >вым эффектом являются различные заболевания, например сахарный диабет, бронхиальная астма или шизофрения, а также различные врожденные аномалии развития- анэнцефалия, spina bifida (аномалии центральной нервной системы хомячья губа, волчья пасть и др. Для этих болезней и пороков развития наблюдаются четкие альтернативные распределения, подобные распределениям по качественным полиморфизмам - индивид либо страдает данным заболеванием, либо нет. Однако тип наследования при этих заболеваниях оказывается ближе к типу наследования количественных признаков. В этом случае можно сказать, что порог является условной границей в нормальном распределении признака, разделяющей, с одноой стороны, пораженных, и с другой - непораженных, но предpacположенных к заболеванию индивидов. При некоторых заболеваниях граница между нормой и патологией прослеживали и довольно четко, особенно при врожденных аномалиях развития, тогда как при других она размыта и весьма условна (например, граница между умственной отсталостью и нормальным интеллектом). Таким образом, признаки с пороговым эффектом скорее могут быть отнесены к категории количественных признаков человека. Соответственно, для них будут справедливы те же закономерности наследования, что и для обычных континуальных признаков.

Когда мы анализировали моно- и дигибридное скрещивание и рисовали решетку Пеннета, мы имели дело с отдельной семьей и потомством от единичного скрещивания. Теперь нашим объектом будет популяция.

В качестве удобной модели расщепления по одной паре аллелей может служить наследование групп крови системы MN. Группа крови этой системы определяется двумя аллелями Ми TV. Гомозиготы ММ имеют группу крови М, гомозиготы NN имеют группу крови N, а гетерозиготы MN имеют группу крови MN.

Рассмотрим замкнутую человеческую популяцию, в которой имеется какое-то количество аллелей Ми какое-то количество аллелей N. В принципе, частота встречаемости аллелей Ми NB популяции может меняться от 100% М, когда вся популяция представлена только гомозиготами ММ, до 100% N, когда вся популяция представлена только гомозиготами NN. Если аллели встречаются с одинаковой частотой, то частота встречаемости каждого из них составит 50%, или 0,5. Предположим, что в нашей популяции представлены не только гомозиготы одного типа, а все три типа сочетаний аллелей, и частота встречаемости каждого аллеля составляет 0,5. Понятно, что в такой популяции с равной вероятностью будут производиться гаметы, несущие аллель М и аллель N, т.е. частоты встречаемости этих гамет также будут равны 0,5. Если браки в этой популяции происходят случайно, то мы можем воспользоваться решеткой Пеннета и изобразить частоту образования гомозигот и гетерозигот в следующем поколении (вероятности перемножаются).

Мы видим, что частоты встречаемости гомозигот (ММ и NN) составляют по 0,25, тогда как частота встречаемости гетерозигот (M7V) в два раза выше - 0,5. Частоты же встречаемости каждого аллеля (М и N) будут по-прежнему одинаковыми - по 0,5. Соответственно в следующем поколении этой популяции (F2), при сохранении случайности браков, будут опять получены те же соотношения.

В реальных популяциях, как правило, наблюдаются самые различные частоты встречаемости аллелей, к тому же между аллелями могут существовать отношения доминантности и рецессивности, и гетерозиготы по внешней выраженности признака могут совпадать с доминантным типом гомозигот, т.е. частоты встречаемости самого признака будут отличаться от частот встречаемости гомозигот и гетерозигот.

Разберем еще один пример, связанный со вкусовой чувствительностью. Когда мы говорили о дискретной изменчивости, мы упоминали о существовании двух типов людей, имеющих разную чувствительность к вкусу феннлтиомочевины (ФТМ). Эта чувствительность зависит от одного гена, предлилейного парой аллелей. Доминантный аллель T определяет чувствительность к вкусу ФТМ, а рецессивный аллель t - отсутствие чувствительности. Таким образом, гомозиготы tt не ощущают горького вкуса ФТМ, тогда как гомозиготы TT и гетерозиготы Tt его ощущают. Опять представим себе изолировамную человеческую популяцию, в которой браки осуществляются случайно, а частоты встречаемости аллелей T и t составляют 0,6 и 0,4 соответственно.

Закон Харди-Вайнберга гласит, что в условиях идеальной популяции частоты генов и генотипов остаются постоянными от поколения к поколению.

Для выполнения закона Харди-Вайнберга требуются несколько условий.

Например, необходима случайность скрещивания в популяции - одинаковая вероятность скрещивания между всеми особями, входящими в состав популяции. Нарушения этого условия у человека могут быть связаны с кровнородственными браками. В этом случае в популяции повышается количество гомозигот.

Еще одна причина нарушения закона Харди-Вайнберга - это ассортативность браков, которая связана с неслучайностью выбора брачного партнера. Например, обнаружена определеенная корреляция между супругами по коэффициенту интеллекта. Ассортативность может быть положительной или отрицательной и соответственно повышать изменчивость в популяции или уменьшать ее. Отметим, что ассортативность влияет не на частоты аллелей, а на частоты гомо- и гетерозигот.

Эти положения в естественных условиях в той или иной степени нарушаются. Однако в целом их влияние не так сильно выражено и в человеческих популяциях соотношения Харди-Вайнберга, как правило, выполняются.

В каждом поколении частота каждого аллеля данного гена и частота каждого генотипа по этому гену сохраняется постоянной. В этом случае и частоты фенотипов постоянны.

При близкородственном скрещивании (инбридинге) частота гомозиготных генотипов увеличивается по сравнению с соотношениями закона Харди-Вайнберга. В результате этого вредные рецессивные мутации, определяющие заболевания, чаще оказываются в гомозиготном состоянии и проявляются в фенотипе. Среди потомства от кровнородственных браковке большей вероятностью встречаются наследственные заболевания и врожденные уродства.

Показано, что с увеличением степени инбридинга снижаются показатели умственного развития и школьная успеваемость. При увеличении коэффициента инбридинга на 10% коэффициент интеллекта снижается на 6 баллов (по шкале Векслера для детей). Коэффициент инбридинга в случае брака двоюродных сибсов равен 1/16, для троюродных сибсов - 1/ 32. Например, частота генетически наследования заболевания фенилкетонурия при неродственных браках составляет 1:15000, а при родственных - 1:7000; альбинизма - 1:40000 и 1:3000 соответственно.

В связи с повышением мобильности населения в развитых странах и разрушением изолированных популяций наблюдается снижение коэффициента инбридинга в течение всего XX в. На это также повлияло снижение рождаемости и уменьшения числа двоюродных сибсов.

При отдаленном скрещивании можно наблюдать появление гибридов с повышенной жизнеспособностью в первом поколений. Это явление получило название гетерозиса. Причиной гетерозиса является перевод вредных рецессивных мутаций в гетерозиготное состояние, при котором они не проявляются в фенотипе.

Цель психогенетики - определить роль факторов наследственности и среды в формировании индивидуальных различий по психологическим и психофизиологическим признакам. Неообходимо оценить изменчивость признака в фенотипе для данной популяции и попытаться дать ответ на вопрос об относительном вкладе в эту изменчивость генетических и средовых факторов.

Популяционный подход к оценке наследуемости особенности поведения не позволяет описывать процессы взаимодействия генотипа и среды в индивидуальном развитии. Когда в результате психогенетических исследований, проведенных, скажем, на близнецах или на приемных детях, признак относят к наследуемому, это не значит, что он наследственно детермирован в общепринятом смысле этого слова. На первый гляд, звучит парадоксально. Психогенетические исследовании ведутся в основном на популяционном уровне. Когда на
основании коррелирующего поведения у родственников полуляционные генетики делают вывод о наследуемости признака, это не означает, что индивидуальное развитие данного поведения им обусловлено исключительно генетическими причинами.

Высокая наследуемость свидетельствует лишь о том, ЧТО разнообразие индивидов в популяции в значительной степени связано с генотипическими различиями между ними.
Имется в виду, что процент индивидов, обладающих данным признаком в популяции потомков, может быть предсказан, исходя из знаний о родительской популяции. Однако значение показателя наследуемости ничего не говорит о последовательности событий в индивидуальном развитии признака и о том, какой конечный фенотип будет результатом развития конкретного индивида. В этом смысле признак с высокой оценкой наследуемости не является детерминированным генотипом, хотя такие интерпретации часто встречаются даже в публикациях специалистов. Это совсем разные вещи - разделить источники вариативности в популяции на генетические и средовые или искать генетические и средовые причины, лежащие в основе онтогенетического формирования конкретных фенотипов.

Результат развития - фенотип - зависит от совместного действия генов и среды. Гены и признаки связаны сложной сетью путей развития. Все индивидуальные различия, которыми занимаются дифференциальные психологи и психогенетики, являются результатом обстоятельств развития конкретных индивидов в конкретных средах. Часто индивиды, воспитанные в явно различающихся средах, имеют много общего. И наоборот, сиблинги, воспитывающиеся в одной семье, казалось бы при сходных обстоятельствах, за счет тонких различий в условиях воспитания и развития реально будут испытывать весьма различные воздействия как физической, так и социальной среды. Это справедливо даже для генетически идентичных МЗ близнецов.

Таким образом, процесс взаимодействия со средой сложен и неоднозначен. Отметим также, что психологи и другие исследователи часто пользуются термином «взаимодействие» в статистическом смысле, когда исследуется взаимодействие отдельных факторов в продуцировании какого-либо измеряемого эффекта. Подчеркнем, что статистическое взаимодействие факторов и взаимодействие генов и среды в индивидуальном развитии - это совершенно разные вещи. Их не следует путать.

Фенотипические различия между людьми объясняются по крайней мере двумя причинами. Во-первых, люди отличаются друг от друга своими генотипами. Это приводит к возникновению генетически обусловленной изменчивости. Во-вторьгх, каждый человек развивается в особенных средовых условиях. Это приводит к возшнсновению средовой изменчивости.

Наследуемость - это характеристика не признака вообще. Это характеристика признака в данной популяции, при данной совокупности условий среды. В другой популяции, при иных воздействиях среды, значения наследуемости могут быть другими.

Структура генофонда в панмиктической стационарной популяции описывается основным законом популяционной генетики – законом Харди-Вайнберга , который гласит, что в идеальной популяции существует постоянное соотношение относительных частот аллелей и генотипов, которое описывается уравнением:

(p A + q a)2 = р2 АА + 2∙р∙q Aa + q2 aa = 1

Если известны относительные частоты аллелей p и q и общая численность популяции Nобщ, то можно рассчитать ожидаемую, или расчетную абсолютную частоту (то есть численность особей) каждого генотипа. Для этого каждый член уравнения нужно умножить на Nобщ:

p2 AA · Nобщ + 2·p·q Aa · Nобщ + q2 aa · Nобщ = Nобщ

В данном уравнении:

p2 AA · Nобщ – ожидаемая абсолютная частота (численность) доминантных гомозигот АА

2·p·q Aa · Nобщ – ожидаемая абсолютная частота (численность) гетерозигот Аа

q2 aa · Nобщ – ожидаемая абсолютная частота (численность) рецессивных гомозигот аа

Действие закона Харди-Вайнберга при неполном доминировании

Рассмотрим действие закона Харди-Вайнберга при неполном доминировании на примере наследования окраски шерсти у лис. Известно, что основное влияние на окраску шерсти у лисиц оказывает ген А, который существует в виде двух основных аллелей: А и а. Каждому возможному генотипу соответствует определенный фенотип:

АА – рыжие, Аа – сиводушки, аа – черно-бурые (или серебристые)

На заготовительных пунктах пушнины в течение многих лет (в России с XVIII века) ведется учет сданных шкурок. Откроем книгу учета сданных шкурок лис на одном из заготовительных пунктов Северо-Востока России и выберем произвольно 100 идущих подряд записей. Подсчитаем число шкурок с различной окраской. Предположим, что получены следующие результаты: рыжие (АА) – 81 шкурка, сиводушки (Аа) – 18 шкурок, черно-бурые (аа) – 1 шкурка.

Подсчитаем число (абсолютную частоту) доминантных аллелей А, учитывая, что каждая лиса – диплоидный организм. Рыжие лисы несут по 2 аллеля А, их 81 особь, всего 2А×81=162А. Сиводушки несут по 1 аллелю А, их 18 особей, всего 1А×18=18А. Общая сумма доминантных аллелей NА = 162 + 18 = 180. Аналогичным образом подсчитаем число рецессивных аллелей а: у черно-бурых лис 2а×1=2а, у сиводушек 1а×18=18а, общая сумма рецессивных аллелей Nа = 2 + 18 = 20.

Общее число всех аллелей гена А = NA + Na =180 + 20 = 200. Мы проанализировали 100 особей, у каждой по 2 аллеля, общая сумма аллелей равна 2 × 100 = 200. Число аллелей, подсчитанных по каждому гено/фенотипу, и число аллелей, подсчитанных по общему количеству особей, в любом случае равно 200, значит, расчеты проведены правильно.

Найдем относительную частоту (или долю) аллеля А по отношению к общему количеству аллелей:

рА = NA: (NA + Na) = 180: 200 = 0,9

Аналогично найдем относительную частоту (или долю) аллеля а:

qa = Na: (NA + Na) = 20: 200 = 0,1

Сумма относительных частот аллелей в популяции описывается соотношением:

рА + qa = 0,9 + 0,1 = 1

Приведенное уравнение является количественным описанием аллелофонда данной популяции, отражает его структуру. Поскольку в книге учета особи представлены случайным образом, и выборка в 100 особей достаточно большая, то полученные результаты можно обобщить (экстраполировать) на всю популяцию.

Рассмотрим изменение структуры аллелофонда (то есть частот всех аллелей) и генофонда (то есть частот всех генотипов) данной популяции при чередовании поколений. Все самцы и самки дают аллели А и а в соотношении 0,9А: 0,1а.

В этом отличие генетики популяций от классической генетики. При рассмотрении законов Менделя изначально задавалось соотношение 1А: 1а, поскольку родители всегда были гомозиготны: АА и аа.

Для нахождения относительных частот генотипов составим решетку Пеннета. При этом учтем, что вероятность встречи аллелей в зиготе равна произведению вероятностей нахождения каждого аллеля.

Гаметы самок

Гаметы самцов

сиводушки

сиводушки

черно-бурые

Найдем итоговые относительные и абсолютные частоты генотипов и фенотипов:

Сравнивая полученный результат с первоначальным состоянием популяции, видим, что структура аллелофонда и генофонда не изменились. Таким образом, в рассмотренной популяции лис закон Харди-Вайнберга выполняется с идеальной точностью.

Действие закона Х арди-Вайнберга при полном доминировании

Рассмотрим действие закона Харди-Вайнберга при полном доминировании на примере наследования окраски шерсти у кошек.

Известно, что черная окраска шерсти у кошек определяется генотипом аа. При этом черная окраска может быть или сплошной, или частичной. Генотипы АА и Аа обусловливают все остальное разнообразие типов окраски, но черный цвет при этом полностью отсутствует.

Предположим, что в одной из городских популяций кошек на о. Сахалин из 100 просмотренных животных полную или частичную черную окраску имели 36 животных.

Прямой расчет структуры аллелофонда популяции в этом случае невозможен из-за полного доминирования: гомозиготы АА и гетерозиготы Аа фенотипически неразличимы. Согласно уравнению Харди-Вайнберга частота черных кошек составляет q2 аа. Тогда можно рассчитать частоты аллелей:

q2aa = 36/100 = 0,36; qa = 0,36 –1/2 =0,6; pA = 1 – 0,6 = 0,4

Таким образом, структура аллелофонда данной популяции описывается соотношением: р А + q a = 0,4 + 0,6 = 1. Частота рецессивного аллеля оказалась выше, чем частота доминантного.

Рассчитаем частоты генотипов:

р2 АА = 0,42 = 0,16; 2 pq Аа = 2 ´ 0,4 ´ 0,6 = 0,48; q2aa = 0,62 = 0,36

Однако проверить правильность расчетов в данном случае невозможно, поскольку неизвестны фактические частоты доминантных гомозигот и гетерозигот.

3. Выполнение закона Харди–Вайнберга в природных популяциях. Практическое значение закона Харди–Вайнберга

В ряде случаев (например, в случае полного доминирования) при описании структуры генофонда природных популяций приходится допустить, что они обладают чертами идеальных популяций.

Сравнительная характеристика идеальных и природных популяций

Идеальная популяция

Природные популяции

1. Численность популяции бесконечно большая, и случайная элиминация (гибель) части особей не влияет на структуру популяции

1. Популяция состоит из конечного числа особей

2. Отсутствует половая дифференцировка, женские и мужские гаметы равноценны (например, при гомоталличной изогамии у водорослей)

2. Существуют различные типы половой дифференцировки, различные способы воспроизведения и различные системы скрещивания

3. Наличие панмиксии – свободного скрещивания; существование гаметного резервуара; равновероятность встречи гамет и образования зигот независимо от генотипа и возраста родителей

3. Существует избирательность при образовании брачных пар, при встрече гамет и образования зигот

4. В популяции отсутствуют мутации

4. Мутации происходят всегда

5. В популяции отсутствует естественный отбор

5. Всегда существует дифференциальное воспроизведение генотипов, включающее дифференциальное выживание и дифференциальный успех в размножении

6. Популяция изолирована от других популяций этого вида

6. Существуют миграции – поток генов

В большинстве изученных популяциях отклонения от перечисленных условий обычно не влияют на выполнение закона Харди-Вайнберга. Это означает, что:

– численность природных популяций достаточно большая;

– женские и мужские гаметы равноценны; самцы и самки в равной степени передают свои аллели потомкам);

– большинство генов не влияет на образование брачных пар;

– мутации происходят достаточно редко;

– естественный отбор не оказывает заметного влияния на частоту большинства аллелей;

– популяции в достаточной степени изолированы друг от друга.

Если же закон Харди-Вайнберга не выполняется, то по отклонениям от расчетных величин можно установить эффект ограниченной численности, различие между самками и самцами при передаче аллелей потомкам, отсутствие свободного скрещивания, наличие мутаций, действие естественного отбора, наличие миграционных связей между популяциями.

В реальных исследованиях всегда существуют отклонения эмпирических, или фактических абсолютных частот (Nфакт или Nф) от расчетных, или теоретических (Nрасч, Nтеор или Nт). Поэтому возникает вопрос: закономерны эти отклонения или случайны, иными словами достоверны или недостоверны? Для ответа на этот вопрос нужно знать фактические частоты доминантных гомозигот и гетерозигот. Поэтому в популяционно-генетических исследованиях выявление гетерозигот играет очень важную роль.

Практическое значение закона Харди–Вайнберга

1. В здравоохранении – позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребенка.

Пример 1. Известно, что альбинизм – это аутосомно-рецессивное заболевание. Установлено, что в большинстве европейских популяций частота рождения детей-альбиносов составляет 1 на 20 тысяч новорожденных. Следовательно,

q2aa = 1/20000 = 0,00005; qa = 0,00005–1/2 = 0,007; pA = 1 – 0,007 = 0,993 ≈ 1

Поскольку для редких заболеваний рА ≈ 1, то частоту гетерозиготных носителей можно рассчитать по формуле 2·q. В данной популяции частота гетерозиготных носителей аллеля альбинизма составляет 2 q Аа = 2 ´ 0,007 = 0,014, или примерно каждый семидесятый член популяции.

Пример 2. Пусть в одной из популяций у 1% населения выявлен рецессивный аллель, который не встречается в гомозиготном состоянии (можно предположить, что в гомозиготном состоянии этот аллель летален). Тогда 2 q Аа = 0,01, следовательно, qa = 0,01:2 = 0,005. Зная частоту рецессивного аллеля, можно установить частоту гибели зародышей–гомозигот: q2aa = 0,0052 = 0,000025 (25 на миллион, или 1 на 40 тысяч).

2. В селекции – позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).

3. В экологии – позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчетных величин можно установить эффект действия экологических факторов. (При этом нужно строго соблюдать принцип единственного различия. Пусть изучается влияние содержания тяжелых металлов в почве на генетическую структуру популяций определенного вида растений. Тогда должны сравниваться две популяции, обитающие в крайне сходных условиях. Единственное различие в условиях обитания должно заключаться в различном содержании определенного металла в почве).

Лекция 8. Тема. Популяционная генетика и адаптация видов. Основы эволюционного учения. Естественный отбор. Искусственный отбор как основа селекции. Основы современной биотехнологии. Основные методы генной, клеточной и хромосомной инженерии. Экология. Биогеоценоз. Пищевые цепи и структура экологической пирамиды. Абиотические, биотические и антропогенные факторы. Виды биотических связей.

Популяционная генетика.

Популяция – это группа организмов одного вида, которая обычно обитает на четко ограниченной территории. Общая генетическая реакция всей популяции определяет ее выживание и является предметом изучения популяционной генетики.

Знание основных законов популяционной генетики позволяет понять механизмы адаптивной изменчивости видов, помочь разобраться в практических вопросах медико-генетического консультирования людей и даже осмыслить ряд мировоззренческих проблем.

Любознательных студентов иногда смущает вопрос: если аллельные гены карих глаз доминируют над генами голубых глаз, почему не исчезают голубоглазые люди? Математическое доказательство этого факта впервые сформулировали независимо друг о друга Харди и Вайнберг в 1908 году.

Каждый ген может существовать в нескольких различных формах, которые называют аллелями. Число организмов популяции, несущих определенный аллель, определяет частоту данного аллеля (частоту гена). Например, ген, определяющий возможность пигментации кожи, глаз и волос у человека в 99% случаев представлен "нормальным" аллелем. Второй возможный вариант этого гена - аллель альбинизма, который делает отложение пигмента невозможным. Его частота 1%. В математике частоту аллелей выражают не в процентах, а в частях (чаще десятичных) от единицы. В данном примере частота доминантного - нормального аллеля будет равна 0,99, а частота рецессивного аллеля альбинизма 0,01. При этом сумма частот аллелей всегда равна единице (0,99 + 0,01 =1). Генетика заимствовала у математической теории вероятностей символы "p"-для обозначения частоты доминантного аллеля и "q"-для частоты рецессивного аллеля. В приведенном примере с пигментацией у человека p+q = 1 (уравнение вероятностей )

Значение этого уравнения в том, что, зная частоту одного аллеля, можно найти частоту другого:

p=1-q – частота доминантного аллеля;

q=1-p – частота рецессивного аллеля.

Например, если рецессивный аллель имеет частоту 5% или q=0,05, тогда доминантный аллель будет иметь частоту p=1-0,05=0,95 или 95%. Следует обратить внимание, что частота аллелей – это не частота проявления признака в фенотипе, которая зависит от сочетания в генотипе 2 аллелей.


Для двух аллелей с полным доминированием (цвет семян гороха) возможны 3 генотипа: АА, Аа, аа и 2 фенотипа: 1-доминантный желтый (АА, Аа); 2-рецессивный зеленый (аа). Таким образом, одинаковые по фенотипу особи могут не совпадать по генотипу. Закон Харди-Вайнберга утверждает: частоты доминантного и рецессивного аллелей разных поколений идеальной популяции постоянны (идеальной можно назвать изолированную популяцию больших размеров, без новых мутаций, где спаривание происходит случайно, все генотипы одинаково плодовиты, а поколения не перекрываются). Этот закон можно выразить в уравнении Харди-Вайнберга

p 2 + 2pq+q 2 =1, где

p 2 -частота доминантных гомозигот (АА)

2pq -частота гетерозигот (Аа)

q 2 -частота рецессивных гомозигот (аа)

Такое распределение возможных генотипов связано со случайным характером распределения гамет в процессе мейоза и основано на теории вероятностей, математически представляет собой квадрат уравнения вероятностей p+q=1 (уравнение вероятностей), (p+q) 2 =1 2 ; (p+q)(p+q)=1;

p 2 + 2pq+q 2 =1 (уравнение Харди-Вайнберга)

Имея два уравнения для вероятностей частоты аллельных генов и наблюдая частоту рецессивных гомозигот (q 2), можно вычислить число гетерозигот (2pq) – носителей скрытых генов и частоты аллельных генов (p-доминантного и q-рецессивного).

Для постановки опытов на лабораторных животных необходимо знать генотипы не только определённых особей, но и генетическую структуру всей линии и вида. С этой целью для обновления и развития биологической науки, её анализа, была создана особая область генетики – популяционной генетики или генетики популяций. Методы этой науки позволяют вскрыть закономерности, реализующие в совокупности особи, то есть в популяциях.

С генетической точки зрения популяцию рассматривают как совокупность особей одного вида, населяющих определённую территорию и неодинаковых по своим фенотипическим и генотипическим свойствам. Для анализа в качестве исходной структуры популяции и её изменений обычно рассматривают свободно скрещивающуюся, так называемую панмиктическую популяцию. Все входящие в неё особи могут спариваться друг с другом в любых сочетаниях, независимо от генетической структуры. Свободно скрещивающиеся популяции возможны только у видов, размножающихся половым путём. Исследования генетических процессов, протекающих в естественных условиях размножения животных, птиц, пресмыкающих, насекомых имеют большое значение для познания биологических особенностей, специфики различий и однородности по генотипу в различных средовых условиях.

В панмиктической популяции существует одинаковая вероятность сочетания любых представителей популяции друг с другом, а также равная вероятность дать потомство, однако при этом имеется в виду не чисто физическое спаривание любых самок с любыми самцами, а только принципиальная возможность его осуществления. Отсюда вытекает потребность в построении ещё одной модели, а именно: можно рассматривать всю совокупность половых клеток, образующиеся особями свободно скрещивающей популяции, как единое целое, как будто все они помещены в сосуд и перемешаны друг с другом. В данном случае соединение женских и мужских половых клеток происходит чисто случайно, и его результаты будут зависеть только от частоты (или измеряемой частотой вероятности) тех или других половых клеток. А также каждая половая клетка до оплодотворения содержит только один ген из пары или серии аллелей, то и совокупность генов находящихся в половых клетках всех особей популяции, как единый генофонд. Долю определённых генов одной и той же серии аллелей принято называть частотой генов.

В зависимости от частот отдельных генов встречающихся в популяции можно определить соотношение генотипов и фенотипов. Зная это соотношение можно определить частоты генов, как важнейшие параметры для характеристики популяции .

Для разбора метода определения частот генов можно привести конкретный пример. На опытной кроликоферме находилось 729 кроликов серой масти (АА), 111 чёрных, являющихся гетерозиготными (Аа) и 4 кролика белых (аа). Если по количеству образовавшихся половых клеток все категории особей не отличаются друг от друга, то, принимая для простого расчёта только две половых клетки, получим следующее количество генов А и а в общем генофонде кроликофермы.

Ген А (2А) (729 х 2) +111=1569 половых клеток.

Ген аа и аа 111+(4+2)=119 половых клеток.

ИТОГО: 1688 половых клеток.

Составляя соотношение: 1688 - 1,0

Cоотношение: 1688 - 1,0

Общая сумма генов: р(А)=0,93

В данном простом примере частоты генов вычислены на основе известной численности или долей, генотипически отличающихся друг от друга групп особей. Зная же частоты генов можно предсказать конкретные соотношения, которые будут получены в следующем поколении свободно скрещивающейся популяции. Лучше всего это сделать в общем виде для любых значений р и q в генофонде. Как самки, так и самцы будут образовывать гаметы двух типов А и а в соотношении р(А):q(а). Результаты соединения мужских и женских гамет могут быть показаны с помощью четырёхпольной таблицы 1.

Таблица 1 – Результаты соединения мужских и женских гамет

Мужские Женские

Гаметы и их частоты, ♀

Гаметы и их частоты ♂

В потомстве образовалось три генотипа в соотношении, выражаемом коэффициентом: Р², 2рq и q² (сумма верхних и нижних полей таблицы) или Р²АА+22рqАа+ q²аа.

Такое соотношение генотипов было названо формулой или законом Харди-Вайнберга, или законом стабилизирующего равновесия, так как оно выражает определённую закономерность, характеризующую популяцию при наличии в ней свободного скрещивания. Такая популяция находится в равновесии по соотношению генотипов, что подтверждается вышеприведенной формулой:

Р²АА+22рqАа+ q²аа =1.

Согласно данному закону Харди-Вайнберга, отсутствие факторов определяющих и изменяющих частоту генов, популяция при любом соотношении аллелей от поколения к поколению сохраняет эти частоты постоянными. Несмотря на некоторые ограничения, по формуле Харди-Вайнберга можно рассчитать структуру популяции и определить частоты гетерозигот, например, по летальным или сублетальным генам, зная частоты гомозигот по рецессивным признакам и частоты особей с доминантными признаками, проанализировать сдвиги в генных частотах по конкретным признакам в результате отбора, мутаций и других факторов.

Во всех популяциях лабораторных животных и в природе при свободном скрещивании происходит расщепление по заданному количеству генов, определяющих разнообразные морфологические и физиологические признаки. В ряде случаев сравнительно легко выделить и аллели отдельных генов, и тогда предстоит грандиозная картина генетической сложности популяции.

Так обстоит дело с анализом генетической структуры популяций у животных, но нам требуется знать факторы способные изменить эту структуру. Их много, но важнейшее место принадлежит отбору.

Под отбором в классическом смысле слова обычно понимают устранение определённой группы особей от размножения, т. е. образования следующего поколения. При отсутствии отбора каждая особь популяции имеет одинаковые шансы дать потомство. Они хоть и случайные, но характеризуются нормальной кривой распределения.

Если же группа особей устраняется от размножения, то на структуру будущего поколения окажет влияние только оставшаяся часть популяции, что неизбежно повлияет на частоту генов в следующем поколении. Однако К. Пирсон показал, что как только возникает состояние панмиксии (свободное скрещивание), соотношение генотипов возвращается к типу, которое соответствует формуле Харди-Вайнберга, но уже в другом их соотношении. Таким образом, при отсутствии браковки гетерозиготных носителей рецессивных аномалий частота появления аномальных животных в популяции остаётся неизменной.

Делить аллели генов на дикие и мутантные, как мы это делали, знакомясь с основами генетики, не совсем правильно, и такое деление может привести к неправильному представлению об эволюции. Исследования природных популяций показывают, что не у всех членов популяции общий генотип, который мы условно называем диким. На самом деле, во многих популяциях наблюдается значительное генетическое разнообразие. Добржанский с коллегами провели исследования диких дрозофил на юго-западе США и обнаружили, что среди них бывают носители нескольких инверсионных вариантов каждой из хромосом. (Инверсия - это поворот одного из участков хромосомы.) В слюнных железах плодовых мушек бывают гигантские хромосомы с четким рисунком черных и белых полос, которые видны под микроскопом. Таким образом легко сравнивать хромосомы разных индивидов и определять, насколько они близки друг другу. Основное понятие популяционной генетики - частота аллеля, то есть доля определенного вида гена или хромосомы в популяции. Предположим, например (воспользовавшись обозначениями Добржанского), что 37% мушек в определенной популяции имеют вторую хромосому со «стандартной» последовательностью генов, 16% имеют инверсию «Arrowhead» и 47% - инверсию «Chiricahua». В таком случае частоты этих форм будут соответственно равны 0,37, 0,16 и 0,47. Добржанский с коллегами составил карты частот различных инверсий по всему региону и показал, что частота каждой инверсии определенным образом меняется от Калифорнии на восток и на север до Мексики. Предполагается, что некоторые генные последовательности дают их обладателям некоторые преимущества в том или ином географическом регионе. В других исследованиях получены приблизительно те же результаты. Многие гены и хромосомы существуют в разных аллельных формах и сохраняются в популяции со значительной частотой, которая, вероятно, может регулярно изменяться (например, в зависимости от сезона). Такая вариативность - богатый источник эволюции.

Разнообразие форм генов поддерживается за счет мутаций, которые с низкой частотой происходят в популяции постоянно. Некоторые изменения генотипа оказываются полезными, поэтому индивиды с генетическими изменениями получают больше шансов оставить потомство. Со временем процент индивидов с полезной мутацией увеличивается. Естественный отбор и предполагает такое репродуктивное преимущество некоторых особей. Каждый генотип имеет свою степень приспособленности, измеряемую в соответствии с частотой репродукции. Сказать, что у определенного генотипа высокая приспособленность, означает, что особи с таким генотипом имеют больше возможностей передать копии своих генов потомству.



Для образования нового вида или более крупной таксономической единицы, такой как род, изменения должны затронуть многие гены. Предположим, что в каком-то виде происходят адаптивные перемены, соответствующие изменениям в генах: геном АА ВВ mm QQ stst становится аа bb ММ qq StSt. Для этого нужны мутации А - а, В - b, т - М, Q - q и st - St. Они скорее всего произойдут независимо друг от друга, в разное время и у разных индивидов, а конечный генотип образуется посредством рекомбинаций. Можно представить себе, как мутации удлиняют и укорачивают конечности позвоночных, делают их кости более тонкими или более толстыми и постепенно создают тот облик животного, к которому мы привыкли. Некоторые исследователи смоделировали отбор по определенному генотипу в лабораторных условиях.

Популяционная генетика описывает эти процессы статистическими методами. Начнем с модели одного гена. Предположим, что в популяции имеются аллели A и a одного и того же гена, и что частота А равна 0,6p, а частота а - 0,4q. (Заметьте, что в такой простой модели р + q = 1, потому что все аллели в популяции принадлежат либо к типу А, либо к типу а.) Можно определить частоты аллелей, подсчитав количество их носителей, как гомозигот, так и гетерозигот. Каждая гомозигота переносит две копии одного и того же аллеля, а гетерозигота - по одной копии каждого.

Каковы будут частоты разных генотипов в этой популяции? Процессы мутации и отбора действуют медленно, на протяжении нескольких поколений, и для начала, предположим, что они вообще не действуют. Предположим также, что популяция достаточно велика, чтобы к ней были применимы принципы вероятности, и что индивиды спариваются случайным образом. Это значит, что ни самцы, ни самки специально не выбирают своих партнеров (например, партнер АА не предпочитает спариваться с партнерами того же генотипа). Вспомним теперь, что гаметы содержат один аллель либо А, либо а, поэтому гаметы А и а будут встречаться с теми же частотами, что и аллели, то есть р и q. Для наглядности можно представить аллели А в виде красных шариков, а аллели а - в виде синих, а весь генофонд популяции - в виде мешка с этими шариками. Для получения нового индивида мы не глядя двумя руками вынимаем из этого мешка два шарика. Вероятность того, что они оба красные равна р х р = р 2 , что они оба синие - q x q = q 2 . Иногда случается, что левой рукой мы вынимаем красный шарик, а правой синий (частота p х q = pq), а иногда наоборот: левой - синий, а правой - красный (частота q х р = qp). Отсюда получаем следующие частоты генотипов: р 2 для АА, 2pq для Аа; q 2 для аа.

Это приблизительная формула, называемая формулой Xapdu-Вайнберга, лежит в основе популяционной генетики. Более сложные ее варианты учитывают частоту мутаций и селективную приспособленность различных аллелей. С ее помощью можно также оценить распространенность в человеческой популяции наследственного заболевания, вызываемого одним аллелем. Возьмем для примера такое аутосомное рецессивное заболевание, как фенилкетонурия, которое в популяции встречается с частотой q 2 . Если в определенной популяции от фенилке-тонурии страдает один человек на 10 тыс., то q 2 = "/ 10000 - Отсюда следует, что q должно быть равно квадратному корню из "/ 10000 , то есть "/ 100 . Так как р + q = I, то р = 99 / 100 . Тогда согласно формуле Харди-Вайнберга частота гетерозиготных носителей 2pq = 2 х 99 / 100 х 1/ 100= 1 / 50 (приблизительно). Эти подсчеты показывают, что гетерозиготные носители встречаются гораздо чаще (приблизительно один на 50 человек), чем гомозиготные больные. Знание частоты гетерозигот очень помогает при генетическом консультировании. Зная данные о распространении гетерозигот, можно также постараться устранить методом отбора рецессивный аллель из популяции, как будет описано далее.