Головная боль, сотрясение мозга, энцефалопатия
Поиск по сайту

Если производная отрицательна то функция убывает. Правила вычисления производных

Исследование функции с помощью производной. В этой статье мы с вами разберём некоторые задачи связанные с исследованием графика функции. В таких задачах, даётся график функции y = f (x) и ставятся вопросы, связанные с определением количества точек, в которых производная функции положительна (либо отрицательна), а также другие. Их относят к заданиям на применение производной к исследованию функций.

Решение таких задач, и вообще задач связанных с исследованием, возможно только при полном понимании свойств производной для исследования графиков функций и производной. Поэтому настоятельно рекомендую вам изучить соответствующую теорию. Можете изучить , а также посмотреть (но в нём краткое изложение).

Задачи, где дан график производной мы будем также рассматривать в будущих статьях, не пропустите! Итак, задачи:

На рисунке изображен график функции у = f (х), определенной на интервале (−6; 8). Определите:

1. Количество целых точек, в которых производная функции отрицательна;

2. Количество точек, в которых касательная к графику функции параллельна прямой у = 2;

1. Производная функции отрицательна на интервалах, на которых функция убывает, то есть на интервалах (−6; –3), (0; 4,2), (6,9; 8). В них содержатся целые точки −5, −4, 1, 2, 3, 4, и 7. Получили 7 точек.

2. Прямая y = 2 параллельная оси ох y = 2 только в точках экстремума (в точках, где график меняет своё поведение с возрастания на убывание или наоборот). Таких точек четыре: –3; 0; 4,2; 6,9

Решите самостоятельно :

Определите количество целых точек, в которых производная функции положительна.

На рисунке изображен график функции у = f (х), определенной на интервале (−5; 5). Определите:

2. Количество целых точек, в которых касательная к графику функции параллельна прямой у = 3;

3. Количество точек, в которых производная равна нулю;

1. Из свойств производной функции известно, что она положительна на интервалах, на которых функция возрастает, т. е. на интервалах (1,4; 2,5) и (4,4;5). В них содержится только одна целая точка х = 2.

2. Прямая y = 3 параллельная оси ох . Касательная будет параллельна прямой y = 3 только в точках экстремума (в точках, где график меняет своё поведение с возрастания на убывание или наоборот).

Таких точек четыре: –4,3; 1,4; 2,5; 4,4

3. Производная равна нулю в четырёх точках (в точках экстремума), их мы уже указали.

Решите самостоятельно:

Определите количество целых точек, в которых производная функции f (x) отрицательна.

На рисунке изображен график функции у = f (х), определенной на интервале (−2; 12). Найдите:

1. Количество целых точек, в которых производная функции положительна;

2. Количество целых точек, в которых производная функции отрицательна;

3. Количество целых точек, в которых касательная к графику функции параллельна прямой у = 2;

4. Количество точек, в которых производная равна нулю.

1. Из свойств производной функции известно, что она положительна на интервалах, на которых функция возрастает, т. е. на интервалах (–2; 1), (2;4), (7; 9) и (10;11). В них содержатся целые точки: –1, 0, 3, 8. Всего их четыре.

2. Производная функции отрицательна на интервалах, на которых функция убывает, то есть на интервалах (1; 2), (4; 7), (9; 10), (11;12). В них содержатся целые точки 5 и 6. Получили 2 точки.

3. Прямая y = 2 параллельная оси ох . Касательная будет параллельна прямой y = 2 только в точках экстремума (в точках, где график меняет своё поведение с возрастания на убывание или наоборот). Таких точек семь: 1; 2; 4; 7; 9; 10; 11.

4. Производная равна нулю в семи точках (в точках экстремума), их мы уже указали.

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

Что такое производная?
Определение и смысл производной функции

Многие удивятся неожиданному расположению этой статьи в моём авторском курсе о производной функции одной переменной и её приложениях. Ведь как оно было ещё со школы: стандартный учебник в первую очередь даёт определение производной, её геометрический, механический смысл. Далее учащиеся находят производные функций по определению, и, собственно, только потом оттачивается техника дифференцирования с помощью таблицы производных .

Но с моей точки зрения, более прагматичен следующий подход: прежде всего, целесообразно ХОРОШО ПОНЯТЬ предел функции , и, в особенности, бесконечно малые величины . Дело в том, что определение производной базируется на понятии предела , которое слабо рассмотрено в школьном курсе. Именно поэтому значительная часть молодых потребителей гранита знаний плохо вникают в саму суть производной. Таким образом, если вы слабо ориентируетесь в дифференциальном исчислении либо мудрый мозг за долгие годы успешно избавился от оного багажа, пожалуйста, начните с пределов функций . Заодно освоите/вспомните их решение.

Тот же практический смысл подсказывает, что сначала выгодно научиться находить производные , в том числе производные сложных функций . Теория теорией, а дифференцировать, как говорится, хочется всегда. В этой связи лучше проработать перечисленные базовые уроки, а может и стать мастером дифференцирования , даже не осознавая сущности своих действий.

К материалам данной страницы рекомендую приступать после ознакомления со статьёй Простейшие задачи с производной , где, в частности рассмотрена задача о касательной к графику функции. Но можно и повременить. Дело в том, что многие приложения производной не требуют её понимания, и неудивительно, что теоретический урок появился достаточно поздно – когда мне потребовалось объяснять нахождение интервалов возрастания/убывания и экстремумов функции. Более того, он довольно долго находился в теме «Функции и графики », пока я всё-таки не решил поставить его раньше.

Поэтому, уважаемые чайники, не спешите поглощать суть производной, как голодные звери, ибо насыщение будет невкусным и неполным.

Понятие возрастания, убывания, максимума, минимума функции

Многие учебные пособия подводят к понятию производной с помощью каких-либо практических задач, и я тоже придумал интересный пример. Представьте, что нам предстоит путешествие в город, до которого можно добраться разными путями. Сразу откинем кривые петляющие дорожки, и будем рассматривать только прямые магистрали. Однако прямолинейные направления тоже бывают разными: до города можно добраться по ровному автобану. Или по холмистому шоссе – вверх-вниз, вверх-вниз. Другая дорога идёт только в гору, а ещё одна – всё время под уклон. Экстремалы выберут маршрут через ущелье с крутым обрывом и отвесным подъемом.

Но каковы бы ни были ваши предпочтения, желательно знать местность или, по меньшей мере, располагать её топографической картой. А если такая информация отсутствует? Ведь можно выбрать, например, ровный путь, да в результате наткнуться на горнолыжный спуск с весёлыми финнами. Не факт, что навигатор и даже спутниковый снимок дадут достоверные данные. Поэтому неплохо бы формализовать рельеф пути средствами математики.

Рассмотрим некоторую дорогу (вид сбоку):

На всякий случай напоминаю элементарный факт: путешествие происходит слева направо . Для простоты полагаем, что функция непрерывна на рассматриваемом участке.

Какие особенности у данного графика?

На интервалах функция возрастает , то есть каждое следующее её значение больше предыдущего. Грубо говоря, график идёт снизу вверх (забираемся на горку). А на интервале функция убывает – каждое следующее значение меньше предыдущего, и наш график идёт сверху вниз (спускаемся по склону).

Также обратим внимание на особые точки. В точке мы достигаем максимума , то есть существует такой участок пути, на котором значение будет самым большим (высоким). В точке же достигается минимум , и существует такая её окрестность, в которой значение самое маленькое (низкое).

Более строгую терминологию и определения рассмотрим на уроке об экстремумах функции , а пока изучим ещё одну важную особенность: на промежутках функция возрастает, но возрастает она с разной скоростью . И первое, что бросается в глаза – на интервале график взмывает вверх гораздо более круто , чем на интервале . Нельзя ли измерить крутизну дороги с помощью математического инструментария?

Скорость изменения функции

Идея состоит в следующем: возьмём некоторое значение (читается «дельта икс») , которое назовём приращением аргумента , и начнём его «примерять» к различным точкам нашего пути:

1) Посмотрим на самую левую точку: минуя расстояние , мы поднимаемся по склону на высоту (зелёная линия). Величина называется приращением функции , и в данном случае это приращение положительно (разность значений по оси – больше нуля). Составим отношение , которое и будет мерИлом крутизны нашей дороги. Очевидно, что – это вполне конкретное число, и, поскольку оба приращения положительны, то .

Внимание! Обозначение являются ЕДИНЫМ символом, то есть нельзя «отрывать» «дельту» от «икса» и рассматривать эти буквы отдельно. Разумеется, комментарий касается и символа приращения функции.

Исследуем природу полученной дроби содержательнее. Пусть изначально мы находимся на высоте 20 метров (в левой чёрной точке). Преодолев расстояние метров (левая красная линия), мы окажемся на высоте 60 метров. Тогда приращение функции составит метров (зелёная линия) и: . Таким образом, на каждом метре этого участка дороги высота увеличивается в среднем на 4 метра …не забыли альпинистское снаряжение? =) Иными словами, построенное отношение характеризует СРЕДНЮЮ СКОРОСТЬ ИЗМЕНЕНИЯ (в данном случае – роста) функции.

Примечание : числовые значения рассматриваемого примера соответствуют пропорциям чертежа лишь приблизительно.

2) Теперь пройдём то же самое расстояние от самой правой чёрной точки. Здесь подъём более пологий, поэтому приращение (малиновая линия) относительно невелико, и отношение по сравнению с предыдущим случаем будет весьма скромным. Условно говоря, метров и скорость роста функции составляет . То есть, здесь на каждый метр пути приходится в среднем пол метра подъёма.

3) Маленькое приключение на склоне горы. Посмотрим на верхнюю чёрную точку, расположенную на оси ординат. Предположим, что это отметка 50 метров. Снова преодолеваем расстояние , в результате чего оказываемся ниже – на уровне 30-ти метров. Поскольку осуществлено движение сверху вниз (в «противоход» направлению оси ), то итоговое приращение функции (высоты) будет отрицательным : метров (коричневый отрезок на чертеже). И в данном случае речь уже идёт о скорости убывания функции: , то есть за каждый метр пути этого участка высота убывает в среднем на 2 метра. Берегите одежду на пятой точке.

Теперь зададимся вопросом: какое значение «измерительного эталона» лучше всего использовать? Совершенно понятно, 10 метров – это весьма грубо. На них запросто уместится добрая дюжина кочек. Да что там кочки, внизу может быть глубокое ущелье, а через несколько метров – другая его сторона с дальнейшим отвесным подъёмом. Таким образом, при десятиметровом мы не получим вразумительной характеристики подобных участков пути посредством отношения .

Из проведённого рассуждения следует вывод – чем меньше значение , тем точнее мы опишем рельеф дороги. Более того, справедливы следующие факты:

Для любой точки подъемов можно подобрать значение (пусть и очень малое), которое умещается в границах того или иного подъёма. А это значит, что соответствующее приращение высоты будет гарантированно положительным, и неравенство корректно укажет рост функции в каждой точке этих интервалов.

– Аналогично, для любой точки склона существует значение , которое полностью уместится на этом склоне. Следовательно, соответствующее приращение высоты однозначно отрицательно, и неравенство корректно покажет убыль функции в каждой точке данного интервала.

– Особо интересен случай, когда скорость изменения функции равна нулю: . Во-первых, нулевое приращение высоты () – признак ровного пути. А во-вторых, есть другие любопытные ситуации, примеры которых вы видите на рисунке. Представьте, что судьба завела нас на самую вершину холма с парящими орлами или дно оврага с квакающими лягушками. Если сделать небольшой шажок в любую сторону, то изменение высоты будет ничтожно мало, и можно сказать, что скорость изменения функции фактически нулевая. В точках наблюдается именно такая картина.

Таким образом, мы подобрались к удивительной возможности идеально точно охарактеризовать скорость изменения функции. Ведь математический анализ позволяет устремить приращение аргумента к нулю: , то есть сделать его бесконечно малым .

По итогу возникает ещё один закономерный вопрос: можно ли для дороги и её графика найти другую функцию , которая сообщала бы нам обо всех ровных участках, подъёмах, спусках, вершинах, низинах, а также о скорости роста/убывания в каждой точке пути?

Что такое производная? Определение производной.
Геометрический смысл производной и дифференциала

Пожалуйста, прочитайте вдумчиво и не слишком быстро – материал прост и доступен каждому! Ничего страшного, если местами что-то покажется не очень понятным, к статье всегда можно вернуться позже. Скажу больше, теорию полезно проштудировать несколько раз, чтобы качественно уяснить все моменты (совет особенно актуален для студентов-«технарей», у которых высшая математика играет значительную роль в учебном процессе).

Естественно, и в самом определении производной в точке заменим на :

К чему мы пришли? А пришли мы к тому, что для функции по закону ставится в соответствие другая функция , которая называется производной функцией (или просто производной) .

Производная характеризует скорость изменения функции . Каким образом? Мысль идёт красной нитью с самого начала статьи. Рассмотрим некоторую точку области определения функции . Пусть функция дифференцируема в данной точке. Тогда:

1) Если , то функция возрастает в точке . И, очевидно, существует интервал (пусть даже очень малый), содержащий точку , на котором функция растёт, и её график идёт «снизу вверх».

2) Если , то функция убывает в точке . И существует интервал, содержащий точку , на котором функция убывает (график идёт «сверху вниз»).

3) Если , то бесконечно близко около точки функция сохраняет свою скорость постоянной. Так бывает, как отмечалось, у функции-константы и в критических точках функции , в частности в точках минимума и максимума .

Немного семантики. Что в широком смысле обозначает глагол «дифференцировать»? Дифференцировать – это значит выделить какой-либо признак. Дифференцируя функцию , мы «выделяем» скорость её изменения в виде производной функции . А что, кстати, понимается под словом «производная»? Функция произошла от функции .

Термины весьма удачно истолковывает механический смысл производной :
Рассмотрим закон изменения координаты тела , зависящий от времени , и функцию скорости движения данного тела . Функция характеризует скорость изменения координаты тела, поэтому является первой производной функции по времени: . Если бы в природе не существовало понятия «движение тела», то не существовало бы и производного понятия «скорость тела».

Ускорение тела – это скорость изменения скорости, поэтому: . Если бы в природе не существовало исходных понятий «движение тела» и «скорость движения тела», то не существовало бы и производного понятия «ускорение тела».


Первая производная Если производная функция положительна (отрицательна) в некотором интервале, то функция в этом интервале монотонно возрастает (монотонно убывает). Если производная функция положительна (отрицательна) в некотором интервале, то функция в этом интервале монотонно возрастает (монотонно убывает). Далее






Определение Кривая называется выпуклой в точке, если в некоторой окрестности этой точки она расположена под своей касательной в точке Кривая называется выпуклой в точке, если в некоторой окрестности этой точки она расположена под своей касательной в точке Кривая называется вогнутой в точке,если в некоторой окрестности этой точке она расположена над своей касательной в точке Кривая называется вогнутой в точке,если в некоторой окрестности этой точке она расположена над своей касательной в точке Далее


Признак вогнутости и выпуклости Если вторая производная функции в данной промежутке положительна, то кривая вогнута в этом промежутке, а если отрицательна – выпукла в этом промежутке. Если вторая производная функции в данной промежутке положительна, то кривая вогнута в этом промежутке, а если отрицательна – выпукла в этом промежутке. Определение



План исследования функции и построения её графика 1. Находят область определения функции и определяют точки разрыва, если они имеются 1. Находят область определения функции и определяют точки разрыва, если они имеются 2. Выясняют, не является ли функция четной или нечетной; проверяют её периодичность 2. Выясняют, не является ли функция четной или нечетной; проверяют её периодичность 3. Определяют точки пересечения графика функции с координатными осями 3. Определяют точки пересечения графика функции с координатными осями 4. Находят критические точки 1-рода 4. Находят критические точки 1-рода 5. Определяют промежутки монотонности и экстремумы функции 5. Определяют промежутки монотонности и экстремумы функции 6. Определяют промежутки выпуклости и вогнутости и находят точки перегиба 6. Определяют промежутки выпуклости и вогнутости и находят точки перегиба 7. Используя результаты исследования, соединяют полученные точки плавной кривой 7. Используя результаты исследования, соединяют полученные точки плавной кривой Выход

Про геометрический смысл написано много теории. Не буду вдаваться в вывод приращения функции, напомню основное для выполнения заданий:

Производная в точке x равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке, то есть это тангенс угла наклона к оси Х.

Возьмем сразу задание из ЕГЭ и начнем в нем разбираться:

Задание №1. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Кто очень торопится и не хочет разбираться в объяснениях: стройте до любого такого треугольника (как показано ниже) и делите стоячую сторону (вертикальную) на лежащую (горизонтальную) и будет вам счастье, если про знак не забудите (если прямая убывает(→↓), то ответ должен быть с минусом, если прямая возрастает(→), то ответ должен быть положительный!)

Найти нужно угол между касательной и осью Х, назовем его α: проведем параллельную оси Х прямую в любом месте через касательную к графику, получим тот же угол.

Лучше не брать точку х0, т.к. понадобится большая лупа для определения точных координат.

Взяв любой прямоугольный треугольник (на рисунке предложено 3 варианта), найдем tgα (углы, то равны, как соответственные), т.е. получим производную функции f(x) в точке x0. Почему же так?

Если мы проведем касательные в других точках x2, x1 и т.д. касательные будут другие.

Вернемся к 7 классу, чтобы построить прямую!

Уравнение прямой задается уравнением y = kx + b , где

k - наклон относительно оси Х.

b - расстояние между точкой пересечения с осью Y и началом координат.

Производная прямой, всегда одна и та же: y" = k.

В какой бы точке на прямой мы не взяли производную, она будет неизменна.

Поэтому, осталось только найти tgα (как было сказано выше: делим стоячую сторону на лежачую). Делим противолежащий катет на прилежащий, получаем, что k = 0,5. Однако, если график убывает, коэффициент отрицательный: k = −0,5.

Советую себя проверять вторым способом:
По двум точкам можно задать прямую. Найдем координаты двух любых точек. Например, (-2;-2) и (2;-4):

Подставим в уравнение y = kx + b вместо y и х координаты точек:

−2 = −2k + b

Решив эту систему, получим b = −3, k = −0,5

Вывод: Второй способ дольше, но в нем вы не забудете про знак.

Ответ: − 0,5

Задание №2 . На рисунке изображён график производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, ..., x8. Сколько из этих точек лежит на промежутках возрастания функции f(x) ?


Если график функции убывает - производная отрицательна (верно и наоборот).

Если график функции возрастает - производная положительна (верно и наоборот).

Эти две фразы помогут вам решить большую часть задач.

Внимательно смотрите, рисунок производной вам дан или функции, а дальше выбирайте одну из двух фраз.

Построим схематично график функции. Т.к. нам дан график производной, то там, где она отрицательна, график функции убывает, где положительна - возрастает!

Получается, что 3 точки лежат на участках возрастания: x4; x5; x6.

Ответ: 3

Задание №3. Функция f(x) определена на промежутке (-6; 4). На рисунке изображен график ее производной . Найдите абсциссу точки, в которой функция принимает наибольшее значение.

Советую всегда строить, как идет график функции, такими стрелочками или схематично со знаками (как в №4 и №5):

Очевидно, если график возрастает до −2, то максимальная точка и есть −2.

Ответ: −2

Задача №4. На рисунке изображён график функции f(x) и двенадцать точек на оси абсцисс: x1, x2, ..., x12. В скольких из этих точек производная функции отрицательна?


Задача обратная, дан график функции, нужно схематично построить, как будет выглядеть график производной функции, и посчитать, сколько точек будет лежать в отрицательном диапазоне.

Положительные: x1, x6, x7, x12.

Отрицательные: x2, x3, x4, x5, x9, x10, x11.

Ответ: 7

Еще один вид заданий, когда спрашивается про какие-то страшные "экстремумы"? Что это такое вам найти не составит труда, я же поясню для графиков.

Задача №5. На рисунке изображен график производной функции f(x), определенной на интервале (-16; 6). Найдите количество точек экстремума функции f(x) на отрезке [-11; 5].

Отметим промежуток от -11 до 5!

Обратим свои светлые очи на табличку: дан график производной функции => тогда экстремумы это точки пересечения с осью X.

Ответ: 3

Задача №6. На рисунке изображен график производной функции f(x), определенной на интервале (-13; 9). Найдите количество точек максимума функции f(x) на отрезке [-12; 5].

Отметим промежуток от -12 до 5!

Можно одним глазом взглянуть в табличку, точка максимума - это экстремум, такой, что до него производная положительна (функция возрастает), а после него производная отрицательна (функция убывает). Такие точки обведены в кружочек.

Стрелочками показано, как ведет себя график функции

Ответ: 3

Задача №7. На рисунке изображен график функции f(x),определенной на интервале (-7; 5). Найдите количество точек, в которых производная функции f(x) равна 0.


Можно посмотреть на выше приведенную табличку (производная равна нулю, значит это точки экстремума). А в даной задаче дан график функции, значит требуется найти количество точек перегиба !

А можно, как обычно: строим схематический график производной.

Производная равна нулю, когда график функций меняет свое направление (с возрастания на убывание и наоборот)


Ответ: 8

Задача №8. На рисунке изображен график производной функции f(x), определенной на интервале (-2; 10). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

Построим схематично график функции:

Там, где он возрастает, получаем 4 целые точки: 4 + 5 + 6 + 7 = 22.

Ответ: 22

Задача №9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 6). Найдите количество точек f(x), в которых касательная к графику функции параллельна прямой y = 2x + 13 или совпадает с ней.

Нам дан график производной! Значит, и нашу касательную нужно «перевести» в производную.

Производная касательной: y" = 2.

А теперь построим обе производные:

Касательные пересекаются в трех точках, значит, наш ответ 3.

Ответ: 3

Задача №10. На рисунке изображен график функции f(x), и отмечены точки -2, 1, 2, 3. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.



Задание чем-то похоже на первое: чтобы найти значение производной, нужно построить касательную к этому графику в точке и найти коэффициент k.

Если прямая убывает, k < 0.

Если прямая возрастает, k > 0.

Подумаем, как значение коэффициента отразится на наклоне прямой:

При k = 1 или k = − 1 график будет посередине между осями Х и У.

Чем ближе прямая к оси Х, тем ближе коэффициент k нулю.

Чем ближе прямая к оси Y, тем ближе коэффициент k к бесконечности.

В точке -2 и 1 k<0, однако в точке 1 прямая убывает "быстрее" больше похоже на ось Y => именно там и будет наименьшее значение производной

Ответ: 1

Задание №11. Прямая является касательной y = 3x + 9 к графику функции y = x³ + x² + 2x + 8 . Найдите абсциссу точки касания.

Прямая будет касательной к графику, когда графики имеют общую точку, как и их производные. Приравняем уравнения графиков и их производные:

Решив второе уравнение, получаем 2 точки. Чтобы проверить, какая из них подходит, подставляем в первое уравнение каждый из иксов. Подойдет только один.

Кубическое уравнение совсем решать не хочется, а квадратное за милую душу.

Вот только, что записывать в ответ, если получится два "нормальных" ответа?

При подстановке икса (х) в первоначальные графики y = 3x + 9 и y = x³ + x² + 2x + 8 должен получиться один и тот же Y

y= 1³+1²+2×1+8=12

Верно! Значит x=1 и будет ответом

Ответ: 1

Задание №12. Прямая y = − 5x − 6 является касательной к графику функции ax² + 5x − 5 . Найдите a .

Аналогично приравняем функции и их проивзодные:

Решим эту систему относительно переменных a и x :

Ответ: 25

Задание с производными считается одним из самых сложных в первой части ЕГЭ, однако, при небольшой доли внимательности и понимания вопроса у вас все получится, и вы поднимете процент выполнения этого задания!